Plasma Chemistry and Plasma Processing

, Volume 24, Issue 1, pp 1–12 | Cite as

Improvement on Hydrophilic and Hydrophobic Properties of Glass Surface Treated by Nonthermal Plasma Induced by Silent Corona Discharge

  • Toshiaki Yamamoto
  • Masaaki Okubo
  • Norikazu Imai
  • Yasunao Mori
Article

Abstract

A fundamental study was conducted to investigate the improvement of the hydrophilic and hydrophobic properties of the glass surface using the atmospheric-pressure nonthermal plasma. The plasma was induced between the two parallel electrodes with a dielectric barrier using an AC 60Hz high voltage power supply. The objective is to demonstrate the possibility of the elimination of the windshield wiper from automobiles. Two approaches were undertaken for modifying the glass surface: one is hydrophilic approach using plasma alone and the other is hydrophobic approach using the combination of hydrophobic chemical and nonthermal plasma. The plasma application provided excellent hydrophilic properties (less than 4° of contact angle). However, the durability did not last for more than one day. The combination of hydrophobic Tri Alkoxy Silane (TAS) chemical coating and nonthermal plasma showed an excellent hydrophobic property and extended durability, more than five times more durable compared with TAS alone.

Nonthermal plasma surface modification glass hydrophilic property hydrophobic property atmospheric pressure high voltage Tri Alkoxy Silane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. W. Balwanz, Surface Contamination; Genesis, Detection and Contr. 1, 255-269 (1979).Google Scholar
  2. 2.
    H. Yasuda, J. Polymer Sci.: Macromol. Rev. 16, 199-293 (1981).Google Scholar
  3. 3.
    M. Yekta-Fard and A. B. Ponter, Phys. Chem. Liq. 15, 19-30 (1985).Google Scholar
  4. 4.
    T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 23, 1125-1128 (1990).Google Scholar
  5. 5.
    Y. Qiu, S. Deflon, and P. Schwartz, J. Adhesion Sci. Tech. (K. L. Mittal and W. J. Ooji, Special Issue on Plasma Surface Modification) 7, 1041-1049 (1993).Google Scholar
  6. 6.
    N. Inagaki, S. Takasa, and H. Kawai, J. Adhesion Sci. Tech. (K. L. Mittal, and W. J. Ooji, Special Issue on Plasma Surface Modification) 7, 279-291 (1993).Google Scholar
  7. 7.
    T. Yamamoto, J. R. Newsome, and D. S. Ensor, IEEE Trans. Ind. Appl. 31, 494-499 (1995).Google Scholar
  8. 8.
    J. S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152-1166 (1991).Google Scholar
  9. 9.
    S. Masuda and H. Nakao, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Denver, CO, 1173-1182 (1986).Google Scholar
  10. 10.
    J. S. Clements, A. Mizuno, W. C. Finney, and R. H. Davies, IEEE Trans. Ind. Appl. 25, 62-69 (1989).Google Scholar
  11. 11.
    S. Masuda, Y. Wu, T. Urabe, and Y. Ono, Proc. 3rd Int. Conf. on Electrostatic Precipitation, Abano, Italy, October (1987).Google Scholar
  12. 12.
    H. H. Kim, K. Tsunoda, K. Shimizu, S. Tanaka, T. Yamamoto, and A. Mizuno, J. Adv. Oxidat. Technol. 4, 347-351 (1999).Google Scholar
  13. 13.
    T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, IEEE Trans. Ind. Appl. 37, 1492-1498 (2001).Google Scholar
  14. 14.
    T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, IEEE Trans. Ind. Appl., 38, 1204-1209 (2002).Google Scholar
  15. 15.
    A. Mizuno, K. Shimizu, K. Yanagihara, K. Kinoshita, K. Tsunoda, H. H. Kim, and S. Katsura, Proc. IEEE Ind. Appl. Soc. Annual Meeting, San Diego, CA, 1808-1812 (1996).Google Scholar
  16. 16.
    T. Oda, T. Kato, T. Takahshi, and K. Shimizu, IEEE Trans. Ind. Appl. 34, 268-272 (1998).Google Scholar
  17. 17.
    S. E. Thomas, A. R. Martin, D. Raybone, J. T. Shawcross, K. L. Ng, and P. Beech, Nonthermal plasma aftertreatment of particulates—Theoretical limits and impact on reactor design, presented at International Spring Fuels and Lubricants Meeting and Exposition, Paris, France, June 19–22, 1-13 (2000).Google Scholar
  18. 18.
    T. Yamamoto, K. Ramanathan, P. A. Lawless, D. S. Ensor, J. R. Newsome, N. Plaks, and G. H. Ramsey, IEEE Trans. Ind. Appl. 28, 528-534 (1992).Google Scholar
  19. 19.
    T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Non-Thermal Plasma Techniques for Pollution Control, Part B: NATO ASI Series, Springer-Verlag, Berlin, 34B, 223-237 (1993).Google Scholar
  20. 20.
    T. Oda, T. Takahashi, and K. Yamaji, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Pittsburgh, PA, CD-ROM (2002).Google Scholar
  21. 21.
    T. Yamamoto and C. L. Yang, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Saint Louis, MO, October 12–16, 1877-1883 (1998).Google Scholar
  22. 22.
    M. Okubo, G. Tanioka, T. Kuroki, and T. Yamamoto, IEEE Trans. Ind. Appl. 38, 1196-1203 (2002).Google Scholar
  23. 23.
    M. Okubo, T. Kuroki, H. Kametaka, and T. Yamamoto, IEEE Trans. Ind. Appl. 37, 1447-1455 (2001).Google Scholar
  24. 24.
    M. Okubo, T. Yamamoto, T. Kuroki, and H. Fukumoto, IEEE Trans. Ind. Appl., 37, 1505-1511 (2001).Google Scholar
  25. 25.
    M. Okubo, J. Mine, T. Kuroki, T. Yamamoto, N. Saeki, and S. Kataoka, Proc. 2nd Asia Aerosol Conf., Pusan, Korea, July 1–4, 361-362 (2001).Google Scholar
  26. 26.
    T. Yamamoto, A. Yoshizaki, T. Kuroki, and M. Okubo, Proc. 1st Joint Meeting of IEEE Ind. Appl. Soc. EPC and ESA, Little Rock, AR, 2003 (in printing).Google Scholar
  27. 27.
    T. Minami and S. Tadanaga, Surf. Tech. 48, 298-303 (1997).Google Scholar
  28. 28.
    S. Sakuhana, Fundamentals and Applications for Glass Surface, Uchida Rokaku-Ho Publ., Tokyo, 103-107 (1985) (in Japanese).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Toshiaki Yamamoto
    • 1
  • Masaaki Okubo
    • 1
  • Norikazu Imai
    • 1
  • Yasunao Mori
    • 2
  1. 1.Department of Energy Systems EngineeringOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.CCI CorporationSeki, GifuJapan

Personalised recommendations