Oxidation of Metals

, Volume 61, Issue 3–4, pp 239–251 | Cite as

Fast Internal Oxidation of Ni–Zr–Y Alloys at Low Oxygen Pressure

  • B. Kloss
  • M. Wenderoth
  • U. Glatzel
  • R. Völkl


Oxidation tests of Ni alloys with additions of Zr and Y were carried out at 1000° C under low oxygen partial pressure. Oxidation kinetics as well as particle morphologies and structures were investigated by scanning-electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Internal oxidation was observed under all circumstances. The kinetics of the internal oxidation was determined. A binary Ni–Zr alloy shows in situ internal oxidation according to theory. Yttrium was found to have a strong influence on the oxidation kinetics. Even minor Y contents considerably accelerate internal oxidation. Fast internal oxidation of ternary Ni–Zr–Y alloys can not be explained by standard internal oxidation theory.

internal oxidation oxide-dispersion-strengthened (ODS) oxygen partial pressure oxygen diffusion nickel alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Benjamin, Metallurgical Transactions 1, 2943-2951 (1970).Google Scholar
  2. 2.
    G. A. Hack, Powder Metallurgy 27(2), 73-79 (1984).Google Scholar
  3. 3.
    M. Rühle, Zeitschrift Für Metallkunde 71 (2), 65-69 (1980).Google Scholar
  4. 4.
    C. Wagner Zeitschrift Für Electrochemie 63 (7), 772-782 (1959).Google Scholar
  5. 5.
    D. L. Douglass Oxidation of Metals 44(1), 81-111 (1995).Google Scholar
  6. 6.
    F. Gesmundo, and B. Gleeson Oxidation of Metals 44, 211(1995).Google Scholar
  7. 7.
    I. Anzžel, A. C. Kneissl, L. Kosec, and A. Krizman Zeitschrift Für Metallkunde 88(8), 38(1997).Google Scholar
  8. 8.
    B. Fischer, Advanced Engineering Materials 3(10), 811-820 (2001).Google Scholar
  9. 9.
    B. Fischer, D. Freund, T. Brömel, R. Völkl, J. Daniel, W. Ross, R. Teschner, and C.-E. Michelsen, in Proceedings of the 25th International Precious Metals Conference (on CD-ROM, International Precious Metals Institute, Pensacola, USA 2002), p. 99.Google Scholar
  10. 10.
    T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, ISBN 0-87170-403-X, 1990.Google Scholar
  11. 11.
    J. R. Groza, and J. C. Gibeling, Materials Science and Engineering A 171, 115-125 (1993).Google Scholar
  12. 12.
    Y. Shida, F. H. Stott, B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 18(34), 93-113 (1982).Google Scholar
  13. 13.
    F. H. Stott, Y. Shida, D. P. Whittle, G. C. Wood, and B. D. Bastow, Oxidation of Metals 18(34), 127-146 (1982).Google Scholar
  14. 14.
    F. N. Rhines, Transactions of the American Institute of Mining Metallurgical Engineers 137, 246(1940).Google Scholar
  15. 15.
    A. H. Grobe, and F. N. Rhines, Transactions of the American Institute of Mining and Metallurgical Engineers 147, 318(1942).Google Scholar
  16. 16.
    H. C. Yi, W. Guan, W. W. Smeltzer, and A. Petric, Acta Metallurgica et Materialia 42(3), 981-990 (1994).Google Scholar
  17. 17.
    I. Anzžel, A. C. Kneissl, and L. Kosec, Zeitschrift Für Metallkunde 90(8), 621-629 (1999).Google Scholar
  18. 18.
    I. Anzžel, A. C. Kneissl, and L. Kosec Zeitschrift Für Metallkunde 90(8), 630-636 (1999).Google Scholar
  19. 19.
    J. Rösler, and E. Arzt, Acta Metallurgica 36(4), 1043-1052 (1988).Google Scholar
  20. 20.
    J. Rösler, and E. Arzt, Acta Metallurgica 36(4), 1053-1060 (1988).Google Scholar
  21. 21.
    E. Arzt, and J. Rösler, Acta Metallurgica 38(4), 671-683 (1990).Google Scholar
  22. 22.
    M. S. Nagorka, C. G. Levi, and G. E. Lucas, Metallurgical and Materials Transaction A 26(4), 859-871 (1995).Google Scholar
  23. 23.
    M. S. Nagorka, C. G. Levi, and G. E. Lucas, Metallurgical and Materials Transaction A 26(4), 873-881 (1995).Google Scholar
  24. 24.
    M. Wenderoth, U. Glatzel, and R. Völkl, Experimental Studies of Internal Oxidation in a Ni–Zr–Y Alloy, ringer Werkstofftag,, J. D. Schnapp, U. Glatzel, K. D. Jandt, and H. Knake eds. 2002, pp. 210-215.Google Scholar
  25. 25.
    A. U. Seybold, PhD thesis, Yale University,New Haven, CT, (1936).Google Scholar
  26. 26.
    G. J. Lloyd, and J. W. Martin, Metal Science Journal 6, 7(1972).Google Scholar
  27. 27.
    C. J. Smithells Metals Reference Book 7th ed., 1992, pp. 12-20.Google Scholar
  28. 28.
    J. W. Park and C. J. Altstetter, Metal Transactions of A 18, 43(1987).Google Scholar
  29. 29.
    G. J. Lloyd, and J. W. Martin, Metal Science Journal 7, 75(1973).Google Scholar
  30. 30.
    R. Barlow, and P. J. Grundy, Journal of Materials Science 4, 797(1969).Google Scholar
  31. 31.
    S. Goto, K. Nomaki, and S. Koda, Journal of the Institute of Metals 31, 600(1967).Google Scholar
  32. 32.
    M. R. Louthan, and A. H. Dexter, Metal Science Journal 7, 76(1973).Google Scholar
  33. 33.
    E. Smith, and R. W. Guard, Transactions of the AIME 9, 1181(1957).Google Scholar
  34. 34.
    D. Kramer, Transactions of the AIME 215, 1959(1959).Google Scholar
  35. 35.
    M. E. Kirkpatrick, and W. L. Larsen, Transactions of the ASM 54, 580(1961).Google Scholar
  36. 36.
    B. J. Beaudry, and A. H. Daane, Transactions of the AIME 218, 854(1960).Google Scholar
  37. 37.
    K. Bhanumurthy, G. B. Kale, S. K. Khera, and M. K. Asundi Metallurgical Transactions 21A, 2897(1990).Google Scholar
  38. 38.
    D. Bergner, Kristall und Technik-Crystal Research and Technology 7, 651(1972).Google Scholar
  39. 39.
    R. A. Rapp, Acta Materialia 9, 730(1961).Google Scholar
  40. 40.
    K. Park, and D. R. Olander, Journal of the Electrochemical Society 138, 1154(1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • B. Kloss
    • 1
  • M. Wenderoth
    • 1
  • U. Glatzel
    • 1
  • R. Völkl
    • 1
  1. 1.Metallic MaterialsUniversity Bayreuth, Ludwig-Thoma-BayreuthGermany

Personalised recommendations