Advertisement

Montmorillonite, Oligonucleotides, RNA and Origin of Life

Abstract

Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5′-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3′,5′-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5′-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12–14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75–80% of the monomers are linked by 2′,5′-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3′,5′- and 2′,5′-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5′-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2′,5′-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2′,5′- and 3′,5′-phosphodiester bonds.Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer <3-mer <4-mer ... <7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).

This is a preview of subscription content, log in to check access.

References

  1. Banin, A.: 1973, U.S. Patent 3,725,528.

  2. Banin, A., Lawless, J. G., Mazzurco, J., Church, F. M., Margulies, L. and Orenberg, J. B.: 1985, pH Profile of the Adsorption of Nucleotides onto Montmorillonite, Origins Life Evol. Biosphere 15, 89–101.

  3. Bernal, J. D.: 1949, Proc. Royal Soc., Section A, London 62, 537–558.

  4. Borggaard, O. K.: 1983, Effect of Surface Area and Mineralogy of Iron Oxides on Their Surface Charge and Anion-Exchange Properties, Clays Clay Min. 31, 230–232.

  5. Boyd, S. A., Lee, J.-F. and Mortland, M. M.: 1988, Attenuating Organic Contaminant Mobility by Soil Modification, Nature 333, 345–347.

  6. Brindley, G. W. and Ertem, G.: 1971, Preparation and Solvation Properties of Some Variable Charge Montmorillonites, Clays Clay Min. 19, 399–404.

  7. Cotton, F. A. and Wilkinson, G.: 1980, Advanced Inorganic Chemistry, 4th Edition, JohnWiley, New York.

  8. Crick, F. H. C.: 1968, The Origin of the Genetic Code, J. Mol. Biol. 38, 367–379.

  9. Ding, P. Z., Kawamura, K. and Ferris, J. P.: 1996, Oligomerization of Uridine Phosphorimidazolides on Montmorillonite: A Model for the Prebiotic Synthesis of RNA on Minerals, Origins Life Evol. Biosphere 26, 151–171.

  10. Ertem, M. C.: 1998, unpublished results.

  11. Ertem, G. and Ferris, J. P.: 1996, Synthesis of RNA Oligomers on Heterogeneous Templates, Nature 379, 238–240.

  12. Ertem, G. and Ferris, J. P.: 1997, Template-Directed Synthesis Using the Heterogeneous Templates Produced by Montmorillonite Catalysis. A Possible Bridge between the Prebiotic and RNA Worlds,J. Am. Chem. Soc. 119,7197–7201.

  13. Ertem, G. and Ferris, J. P.: 1998a, Synthesis of RNA Oligomers and Their Template Properties, Viva Origino 26, 203–218.

  14. Ertem, G. and Ferris, J. P.: 1998b, Formation of RNA Oligomers on Montmorillonite: Site of Catalysis, Origins Life Evol. Biosphere 28, 485–499.

  15. Ertem, G. and Ferris, J. P.: 2000, Sequence and Regio-Selectivity in the Montmorillonite-Catalyzed Synthesis of RNA, Origins Life Evol. Biosphere 30, 411–422.

  16. Ertem, G. and Lagaly, G.: 1978, Matrix Effects of Solid Surfaces on Bimolecular Films, J. Col. Interface Sci. 66, 12–19.

  17. Ferris, J. P.: 1999, The Synthesis of the First Polyribonucleotides: The Role of Catalysis, Chemtracts-Biochemistry and Molecular Biology 12, 419–431.

  18. Ferris, J. P., Ertem, G. and Agarwal, V. K.: 1989a, Mineral Catalysis of the Formation of Dimers of 5’-AMP in Aqueous Solution: The Possible Role of Montmorillonite Clays in the Prebiotic Synthesis of RNA, Origins Life Evol. Biosphere 19, 165–178.

  19. Ferris, J. P., Ertem, G. and Agarwal, V. K.: 1989b, The Adsorption of Nucleotides and Polynucleotides on Montmorillonite Clay, Origins Life Evol. Biosphere 19, 153–164.

  20. Ferris, J. P. and Ertem, E.: 1992a, Oligomerization Reactions of Ribonucleotides on Montmorillonite: Reaction of the 5’-Phosphorimidazolide of Adenosine, Science 257, 1387–1389.

  21. Ferris, J. P. and Ertem, E.: 1992b, Oligomerization Reactions of Ribonucleotides: The Reaction of the 5’-Phosphorimidazolide of Nucleosides on Montmorillonite and Other Minerals, Origins Life Evol. Biosphere 22, 369–381.

  22. Ferris, J. P. and Ertem, E.: 1993a, Oligomerization Reactions of Ribonucleotides: The Reaction of the 5’-Phosphorimidazolide of Adenosine with Diadenosine Pyrophosphate on Montmorillonite and other Minerals, Origins Life Evol. Biosphere 23, 229–241.

  23. Ferris, J. P. and Ertem, E.: 1993b, Montmorillonite Catalysis of RNA Oligomer Formation in Aqueous Solution. A Model for the Prebiotic Formation of RNA, J. Am. Chem. Soc. 115, 12270–12275.

  24. Ferris, J. P. and Ertem, E.: 1997, unpublished results.

  25. Ferris, J. P., Hill, A. R. Jr., Liu, R. and Orgel, L. E.: 1996, Synthesis of Long Prebiotic Oligomers on Mineral Surfaces, Nature 381, 59–61.

  26. Ferris, J. P. and Kamaluddin: 1989, Oligomerization Reactions of Deoxyribonucleotides on Montmorillonite Clay: The Effect of Mononucleotide Structure on Phosphodiester Bond Formation, Origins Life Evol. Biosphere 19, 609–619.

  27. Ferris, J. P., Kamaluddin and Ertem, G.: 1990, Oligomerization Reactions of Deoxyribonucleotides on Montmorillonite Clay: The Effect of Mononucleotide Structure, Phosphate Activation and Montmorillonite Composition on Phosphodiester Bond Formation, Origins Life Evol. Biosphere 20, 279–291.

  28. Ferris, J. P. and Peyser, J. R.: 1994, Rapid and Efficient Syntheses of Phosphorylated Dinucleotides, Nucleosides Nucleotides 13, 1087–1111.

  29. Gilbert, W.: 1986, Origin of Life–The RNA World, Nature 319, 618–618.

  30. Grim, R. E.: 1968, Clay Mineralogy, McGraw Hill, New York.

  31. Grim, R. E. and Güven, N.: 1978, Developments in Sedimentology24: Bentonites, Geology, Mineralogy, Properties and Uses, Elsevier, Amsterdam.

  32. Grzeskowiak, K. and Orgel, L. E.: 1986, Template-Directed Synthesis on Short Oligoribocytidylates, J. Mol. Evol. 23, 287–289.

  33. Järvinen, P., Oivanen, M. and Lönnberg, H.: 1991, Interconversion and Phosphoester Hydrolysis of 2’,5’-Dinucleoside and 3’,5’-Dinucleoside Monophosphates–Kinetics and Mechanisms, J. Org. Chem. 56, 5396–5401.

  34. Joyce, G. F., Inoue, T. and Orgel, L. E.: 1984, Non-Enzymic Template-Directed Synthesis on RNA Random Copolymers. Poly(C,U) Templates, J. Mol. Biol. 176, 279–306.

  35. Joyce, G. F. and Orgel, L. E.: 1999, Prospects for Understanding the Origin of the RNA World, in R. F. Gesteland, T. R. Cech R. and J. F. Atkins (eds.), The RNA World, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp.49–77.

  36. Kanavarioti, A.: 1997, Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides, Origins Life Evol. Biosphere 27, 357–376.

  37. Kanavarioti, A., Bernasconi, C. F., Doodokyan, D. L. and Alberas, D. J.: 1989, Magnesium Ion Catalyzed Phosphorus-Nitrogen Bond Hydrolysis in Imidazolide-Activated Nucleotides. Relevance to Template Directed Synthesis of Polynucleotides, J. Am. Chem. Soc. 111, 7247–7257.

  38. Kawamura, K. and Ferris, J. P.: 1994, Kinetic and Mechanistic Analysis of Dinucleotide and Oligonucleotide Formation from the 5’-Phosphoroimidazolide of Adenosine on Montmorillonite, J. Am. Chem. Soc. 116, 7564–7572.

  39. Kawamura, K. and Ferris, J. P.: 1999, Clay Catalysis of Oligonucleotide Formation: Kinetics of the Reaction of the 5’-Phosphorimidazolides of Nucleotides with the Non-Basic Heterocycles Uracil and Hypoxanthine, Origins Life Evol. Biosphere 29, 563–591.

  40. Kay, K.: 1990, B.S. Thesis, Rensselaer Polytechnic Institute.

  41. Kebbekus, P.: 1988, B.S. Thesis, Rensselaer Polytechnic Institute. Lagaly, G. and Weiss, A.: 1970a, Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen. Teil II. Darstellung der n-Alkylammoniumderivate von glimmerartigen Schichtsilicaten, Kolloid Z. und Z. Polymere 237, 266–273.

  42. Lagaly, G. and Weiss, A.: 1970b, Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen. II. Paraffinähnliche Strukturen bei den n-Alkylammonium-Schichtsilicaten mit hoher Schichtladung (Glimmer), Kolloid Z. und Z. Polymere 237, 364–368.

  43. Lailach, G. E., Thompson, T. D. and Brindley, G. W.: 1968, Absorption of Pyrimidines, and Nucleosides by Li-, Na-, Mg-, and Camontmorillonite (Clay-Organic Studies XII), Clays Clay Min. 16, 285–293.

  44. Lohrmann, R.: 1977, Formation of Nucleoside 5’-Phosphoramidates under Potentially Prebiological Conditions, J. Mol. Evol. 10, 137–154.

  45. Mortland, M. M.: 1966, Urea Complexes with Montmorillonite: An Infrared Absorption Study, Clay Minerals 6, 143–156.

  46. Mortland, M. M.: 1968, Protonation of Compounds at Clay Mineral Surfaces, 9th Int. Cong. Soil Sci., Vol. I, 691–699.

  47. Ohtsuka, K., Suda, M., Tsunoda, M. and Ono, M.: 1990, Synthesis of Metal Hydroxide-Layer Silicate Intercalation Compounds (Metal = Mg(II), Ca(II), Mn(II), Fe(II), Co(II), Ni(II), Zn(II), and Cd(II), Chem. Mater. 2, 511–517.

  48. Orgel, L. E.: 1968, Evolution of the Genetic Apparatus, J. Mol. Biol. 38, 381–393.

  49. Orgel, L. E.: 1998, The Origin of Life–A Review of Facts and Speculations, Trends Biochem. Sci. 23, 491–495.

  50. Peyser, J. R.: 1993, PhD Thesis, Rensselaer Polytechnic Institute. Pinnavaia, T. J.: 1983, Intercalated Clay Catalysts, Science 220, 365–371.

  51. Pinnavaia, T. J., Tzou, M.-S., Landau, S. D. and Raythatha, R.: 1984, On the Pillaring and Delamination of Smectite Clay Catalysts by Polyoxo Cations of Aluminum, J. Molec. Catal. 27, 195–212.

  52. Ponnamperuma, C., Shimoyama, A. and Friebele, E.: 1982, Clay and the Origin of Life, Origins Life Evol. Biosphere 12, 9–40.

  53. Prabahar, K. J., Cole, T. D. and Ferris, J. P.: 1994, Effect of Phosphate Activating Group on Oligonucleotide Formation on Montmorillonite: The Regioselective Formation of 3’,5’-Linked Oligoadenylates, J. Am. Chem. Soc. 116, 10914–10920.

  54. Prabahar, K. J. and Ferris, J. P.: 1997a, Adenine Derivatives as Phosphate-Activating Groups for the Regioselective Formation of 3’,5’-Linked Oligoadenylates on Montmorillonite: Possible Phosphate-Activating Groups for the Prebiotic Synthesis of RNA, J. Am. Chem. Soc. 119, 4330–4337.

  55. Prabahar, K. J. and Ferris, J. P.: 1997b, Effect of Dinucleoside Pyrophosphates on the Oligomerization of Activated Mononucleotides on Na+-Montmorillonite: Reaction of 5’-Phosphoro-4-(Dimethylamino)pyridinium [4-(CH3)2NpypA] with A5'ppA, Origins Life Evol. Biosphere 27, 513–523.

  56. Rao, M., Odom, D. G. and Oro', J.: 1980, Clays in Prebiological Chemistry, J. Mol. Evol. 15, 317–331.

  57. Ross, C. S. and Hendricks, S. B.: 1945, Minerals of the Montmorillonite group, their Origin and Relation to Soils and Clays, U.S. Geol. Surv. Profess. Paper 205-B, 23–79.

  58. Sawhney, B. L. and Singh, S. S.: 1997, Sorption of Atrazine by Al-and Ca-saturated Smectite, Clays Clay Min. 45, 333–338.

  59. Sawai, H., Higa, H. and Kuroda, K.: 1992, Synthesis of Cyclic and Acyclic Oligocytidylates by Uranyl Ion Catalyst in Aqueous Solution, J. Chem. Soc., Perkin Trans. 1, 505–508.

  60. Schwartz, A. W.: 1999, private communication. Sindorf, D. W. and Maciel, G. E.: 1982, Cross-Polarization Magic-Angle-Spinning Silicon-29 Nuclear Magnetic Resonance Study of Silica Gel Using Trimethylsilane Bonding as A Probe of Surface Geometry and Reactivity, J. Phys. Chem. 5208–5219.

  61. Solomon, D. H., Loft, B. C. and Swift, J. D.: 1968, Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals, Clay Minerals 7, 389–397.

  62. Stribling, R.: 1991, High-Performance Liquid Chromatography of Oligoguanylates at High pH, J. Chromatogr. 338, 474–479.

  63. Sundaram, A.: 1991, M.S. Thesis, Rensselaer Polytechnic Institute. Terfort, A. and von Kiedrowski, G.: 1992, Self-Replication by Condensation of 3-Aminobenzamidines with 2-Formylphenoxy Acetic Acids, Angew. Chem. Int. Ed. Engl. 31, 654–656.

  64. Van Olphen, H.: 1977, An Introduction to Clay Colloid Chemistry, John Wiley, New York.

  65. Wang, K.-J. and Ferris, J. P.: 2001, Effect of Inhibitors on the Montmorillonite Clay-Catalyzed Formation of RNA: Studies on the Reaction Pathway, Origins Life Evol. Biosphere 31, 381–402.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ertem, G. Montmorillonite, Oligonucleotides, RNA and Origin of Life. Orig Life Evol Biosph 34, 549–570 (2004) doi:10.1023/B:ORIG.0000043130.49790.a7

Download citation

  • HPLC
  • mineral catalysis
  • montmorillonite
  • oligonucleotides
  • origin of life
  • regioselectivity
  • RNA
  • self-condensation
  • template directed synthesis