Advertisement

Origins of life and evolution of the biosphere

, Volume 34, Issue 6, pp 615–626 | Cite as

Growth of Methanogens on a Mars Soil Simulant

  • Timothy A. Kral
  • Curtis R. Bekkum
  • Christopher P. McKay
Article

Abstract

Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

JSC Mars-1 Mars Mars soil simulant methanogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. C., Jager, K. M., Morris, R. V., Lindstrom, D. J., Lindstrom, M. M. and Lockwood, J. P.: 1998, Martian Soil Simulant Available for Scientific, Educational Study, EOS 79, 405–412.Google Scholar
  2. Bell, J. F., Morris R. V. and Adams, J. B.: 1993, Thermally Altered Palagonite Tephra: A Spectral and Process Analog to the Soil and Dust of Mars, J. Geophys. Res. 98, 3373–3385.Google Scholar
  3. Boone, D. R., Johnson, R. L. and Liu, Y.: 1989, Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and its Implications in the Measurement of Kmfor H2 or Formate Uptake, Appl. Environ. Microbio. 55, 1735–1741.Google Scholar
  4. Boston, P. J., Ivanov, M. V. and McKay, C. P.: 1992, On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars, Icarus 95, 300–308.CrossRefPubMedGoogle Scholar
  5. Carr, M. H.: 1996, Water on Mars, Oxford University Press, New York.Google Scholar
  6. Chapelle, F. H., O'Neill, K., Bradley, P. M., Methe, B. A., Ciufo, S. A., Knobel, L. L. and Lovley, D. R.: 2002, A Hydrogen-Based Subsurface Microbial Community Dominated by Methanogens, Nature 415, 312–315.CrossRefPubMedGoogle Scholar
  7. Cooper, C. D. and Mustard, J. F.: 1999, Sulfates on Mars: Spectroscopic Evaluation of Analog Mixtures, LPSC XXX, #2042.Google Scholar
  8. DiMarco, A. A., Bobik, T. A. and Wolfe, R. S.: 1990, Unusual Coenzymes of Methanogenesis, Ann. Rev. Biochem. 59, 355–394.CrossRefPubMedGoogle Scholar
  9. Ehrlich, H. L.: 1990, Geomicrobiology, 2nd Edition, Marcel Dekker, Inc. New York. Gerhardt, P. (ed.): 1994, Methods for General and Molecular Biology, American Society for Microbiology, Washington, D.C., pp. 257–260.Google Scholar
  10. Golden, D. C., Morris, R. V. and Ming, D. W.: 1993, Mineralogy of Three Slightly Palagonitized Basaltic Tephra Samples from the Summit of Mauna Kea, Hawaii, J. Geophys. Res. 98, 3401–3411. 626 T. A. KRAL ET AL.Google Scholar
  11. Jarrell, K. F. and Kalmokoff, M. L.: 1987, Nutritional Requirements of the Methanogenic Archaebacteria, Can. J. Microbiol. 34, 557–576.Google Scholar
  12. Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R. and Wolfe, R. S.: 1983, Methanococcus jannashiiSp. Nov., an Extremely Thermophilic Methanogen from a Submarine Thermal Vent, Arch. Microbiol. 136, 254–261.Google Scholar
  13. Kiener, A., Konig, H., Winter, J. and Leisinger, T.: 1987, Purification and Use of Methanobacterium wolfeiPseudomurein Endopeptidase for Lysis of Methanobacterium thermoautotrophicum, J. Bacteriol. 169, 1010–1016.PubMedGoogle Scholar
  14. Klein, H. P.: 1978, The Viking Biology Experiments on Mars, Icarus 34, 666–674.CrossRefGoogle Scholar
  15. Klein, H. P.: 1979, The Viking Missions and the Search for Life on Mars, Rev. Geophys. Space Phys. 17, 1655–1662.Google Scholar
  16. Klingler, J. M., Mancinelli, R. L. and White, M. R.: 1989, Biological Nitrogen Fixation under Primordial Martian Partial Pressures of Dinitrogen, Adv. Space Res. 9, 173–176.CrossRefPubMedGoogle Scholar
  17. Lepper, K.: 2003, Single-Grain Optical Dating Properties of JSC Mars-1: PreliminaryMeasurements of Radiation Dose Response and Sensitivity Change, LPSC XXXIV, #1962.Google Scholar
  18. Magingo, F. S. S., and Stumm, C. K.: 1991, Nitrogen Fixation by Methanobacterium formicicum, FEMS Microbiol. Lett. 81, 273–278.CrossRefGoogle Scholar
  19. Murray, P. A. and Zinder, S. H.: 1984, Nitrogen Fixation by a Methanogenic Archaebacterium, Nature (London) 312, 284–286.Google Scholar
  20. Ni, S. and Boone, D.R.:1991,Isolation and Characterization of a Dimethyl Sulfide-Degrading Methanogen, Methanolobus siciliaeHI350, from an Oil Well, Characterization of M. siciliaeT4/MT,and Emendation of M. siciliae Int. J. Syst. Bacteriol. 41,410–416.PubMedGoogle Scholar
  21. Owen, T.: 1992, in H. H. Kieffer, Jakosky, B. M., Snyder, C. W. and Matthews, M. S. (eds.), The Composition and Early History of the Atmosphere of Mars, Mars, University of Arizona Press, Tucson, pp. 818–834.Google Scholar
  22. Peeler, J. T., Houghtby, G. A. and Rainosek, A. P.: 1992, The Most Probable Number Technique, Compendium of Methods for the Microbiological Examination of Foods, 3rd Edition, pp. 105–120.Google Scholar
  23. Staley, J. T. (ed.): 1989, Bergeyś Manual of Systematic Bacteriology, Vol. 3, Williams and Wilkins, Baltimore, pp. 719–736Google Scholar
  24. Stevens, T. O. and McKinley, J. P.: 1995, Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers, Science 270, 450–454.Google Scholar
  25. Windholz, M. (ed.): 1983, Merck Index, Merck and Co., Inc. Rahway, N.J., pp. 852–853.Google Scholar
  26. Xun, L., Boone, D. R. and Mah, R. A.: 1988, Control of the Life Cycle of Methanosarcina mazeiS-6 by Manipulation of Growth Conditions, Appl. Environ. Microbio. 54, 2064–2068.Google Scholar
  27. Zinder, S. H.: 1993, in F. G. Ferry (ed.), Methanogenesis, Chapman and Hall, NY, pp. 128–206.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Timothy A. Kral
    • 1
  • Curtis R. Bekkum
    • 2
  • Christopher P. McKay
    • 3
  1. 1.Arkansas-Oklahoma Center for Space and Planetary SciencesUniversity of ArkansasFayettevilleU.S.A
  2. 2.Department of Biological SciencesUniversity of ArkansasFayettevilleU.S.A
  3. 3.NASA Ames Research Center, Space Science DivisionMoffett FieldU.S.A

Personalised recommendations