Origins of life and evolution of the biosphere

, Volume 34, Issue 5, pp 497–512 | Cite as

Kinetic Analysis of Self-Replicating Peptides: Possibility of Chiral Amplification in Open Systems

  • Jesús Rivera Islas
  • Jean-Claude Micheau
  • Thomas Buhse

Abstract

A simplified kinetic model scheme is presented that addresses the main reactions of two recently reported peptide self-replicators. Experimentally observed differences in the autocatalytic efficiency between these two systems - caused by variations in the peptide sequences - and the possible effect of chiral amplification under heterochiral reaction conditions were evaluated. Our numerical simulations indicated that differences in the catalytic performance are exclusively due to pronounced variations in the rate parameters that control the reversible and hydrophobic interactions in the reaction system but neither to alterations in the underlying reaction network nor to changes in the stoichiometry of the involved aggregation processes. Model predictions further demonstrated the possible existence of chiral amplification if peptide self-replication is performed under heterochiral reaction conditions. Pointing into the direction of a possible cause for biomolecular homochirality, it was found that in open flow reactors, keeping the system under non-equilibrium conditions, a remarkable amplification of enantiomeric excess could be achieved. According to our modeling, this is due to a chiroselective autocatalytic effect and a meso-type separation process both of which are assumed to be intrinsic for the underlying dynamics of heterochiral peptide self-replication.

amplification of enantiomeric excess autocatalysis biomolecular homochirality chiroselective autocatalytic effect kinetic analysis peptide self-replication stereoselectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avalos, M., Babiano, R., Cintas, P., Jiménez, J. L. and Palacios, J. C.: 1997, Nonlinear Stereochem-ical Effects in Asymmetric Reactions, Tetrahedron: Asymmetry 8, 2997-3017.CrossRefGoogle Scholar
  2. Bag, B. G. and von Kiedrowski, G.: 1996, Templates, Autocatalysis and Molecular Replication, Pure Appl. Chem. 68, 2145-2152.Google Scholar
  3. Bonner, W. A.: 1991, The Origin and Amplification of Biomolecular Chirality, Origins Life Evol. Biosphere 21, 59-111.Google Scholar
  4. Cousins, G. R. L., Poulsen, S. A. and Sanders, J. K. M.: 2000, Molecular Evolution: Dynamic Combinatorial Librairies, Autocacatalytic Networks and the Quest for Molecular Function, Curr. Opin. Chem. Biol. 4, 270-279.CrossRefPubMedGoogle Scholar
  5. Eigen, M.: 1971, Selforganization of Matter and the Evolution of Biological Macromolecules, Naturwiss. 58, 465-522.PubMedGoogle Scholar
  6. Eigen, M. and Schuster, P.: 1982, Stages of Emerging Life-Five Principles of Early Organization, J. Mol. Evol. 19, 47-61.PubMedGoogle Scholar
  7. Frank, F. C.: 1953, On Spontaneous Asymmetric Synthesis, Biochim. Biophys. Acta 11, 459-463.CrossRefPubMedGoogle Scholar
  8. Girard, C. and Kagan, H. B.: 1998, Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation, Angew. Chem. Int. Ed. 37, 2922-2959.CrossRefGoogle Scholar
  9. Issac, R. and Chmielewski, J.: 2002, Approaching Exponential Growth with a Self-Replicating Peptide, J. Am. Chem. Soc. 124, 6808-6809.CrossRefPubMedGoogle Scholar
  10. Jacques, J., Collet, A. and Wilen, S. H.: 1981, Enantiomers, Racemates and Resolution, Wiley, New Yor k.Google Scholar
  11. Joyce, G. F.: 1989, RNA Evolution and the Origins of Life, Nature 338, 217-224.Google Scholar
  12. Kauffman, S. A.: 1996, Self-Replication: Even Peptides Do It, Nature 382, 496-497.CrossRefPubMedGoogle Scholar
  13. Kennan, A. J., Haridas, V., Severin, K., Lee, D. H. and Ghadiri, M. R.: 2001, A de novoDesigned Peptide Ligase: A Mechanistic Investigation, J. Am. Chem. Soc. 123, 1797-1803.CrossRefPubMedGoogle Scholar
  14. Kondepudi, D. K. and Nelson, G. W.: 1985, Weak Neutral Currents and the Origin of Biomolecular Chirality, Nature 314, 438-441.Google Scholar
  15. Kondepudi, D. K., Kaufman, R. J. and Singh, N.: 1990, Chiral Symmetry Breaking in Sodium Chlorate Crystallization, Science 250, 975-976.Google Scholar
  16. Kondepudi, D. K. and Asakura, K.: 2001, Chiral Autocatalysis, Spontaneous Symmetry Breaking, and Stochastic Behavior, Acc. Chem. Res. 34, 946-954.CrossRefPubMedGoogle Scholar
  17. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. and Ghadiri, M. R.: 1996, A Self-Replicating Peptide, Nature 382, 525-528.CrossRefPubMedGoogle Scholar
  18. Orgel, L. E.: 1992, Molecular Replication, Nature 358, 203-209.CrossRefPubMedGoogle Scholar
  19. Rivera Islas, J., Pimienta, V., Micheau, J. C. and Buhse, T.: 2003a, Kinetic Analysis of Artificial Peptide Self-Replication. Part I: The Homochiral Case, Biophys. Chem. 103, 191-200.CrossRefPubMedGoogle Scholar
  20. Rivera Islas, J., Pimienta, V., Micheau, J. C. and Buhse, T.: 2003b, Kinetic Analysis of Artificial Peptide Self-Replication. Part II: The Heterochiral Case, Biophys. Chem. 103, 201-211.CrossRefPubMedGoogle Scholar
  21. Robertson, A., Sinclair, A. J. and Philp, D.: 2000, Minimal Self-Replicating Systems, Chem. Soc. Rev. 29, 141-152.CrossRefGoogle Scholar
  22. Saghatelian, A., Yokobayashi, Y., Soltani, K. and Ghadiri, M. R.: 2001, A Chiroselective Peptide Replicator, Nature 409, 797-801.CrossRefPubMedGoogle Scholar
  23. Severin, K., Lee, D. H., Martinez, J. A. and Ghadiri, M. R.: 1997, Peptide Self-Replication via Template-Directed Ligation, Chem Eur.J. 3, 1017-1024.Google Scholar
  24. Severin, K., Lee, D. H., Martinez, J. A., Vieth, M. and Ghadiri, M. R.: 1998, Dynamic Error Correction in Autocatalytic Peptide Networks, Angew. Chem. Int. Ed. Engl. 37, 126-128.CrossRefGoogle Scholar
  25. Soai, K., Shibata, T., Morioka, H. and Choji, K.: 1995, Asymmetric Autocatalysis and Amplification of Enantiomeric Excess of a Chiral Molecule', Nature 378, 767.CrossRefGoogle Scholar
  26. Spiegelman, S.: 1971, An Approach to the Experimental Analysis of Precellular Evolution, Quart. Rev. Biophys. 4, 213-253.Google Scholar
  27. Tjivikua, T., Ballester, P. and Rebek Jr., J.: 1990, A Self-Replicating System, J. Am. Chem. Soc. 112, 1249-1250.Google Scholar
  28. von Kiedrowski, G.: 1986, A Self-Replicating Hexadeoxynucleotide, Angew. Chem. Int. Ed. Engl. 25, 932-935.CrossRefGoogle Scholar
  29. von Kiedrowski, G.: 1993, Minimal Replicator Theory I: Parabolic vs. Exponential Growth, Bioorg. Chem. Front. 3, 113-146.Google Scholar
  30. Yao, S., Ghosh, I., Zutshi, R. and Chmielewski, J.: 1998, Selective Amplification via Auto-and Cross-Catalysis in a Replicating Peptide System, Nature 396, 447-450.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jesús Rivera Islas
    • 1
  • Jean-Claude Micheau
    • 2
  • Thomas Buhse
    • 1
  1. 1.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosMorelosMéxico
  2. 2.Laboratoire des IMRCP, UMR au CNRS No. 5623Université Paul SabatierCedexFrance

Personalised recommendations