Advertisement

Origins of life and evolution of the biosphere

, Volume 34, Issue 4, pp 361–369 | Cite as

Prebiotic Adenine Revisited: Eutectics and Photochemistry

  • Leslie E. Orgel
Article

Abstract

Recent studies support an earlier suggestion that, if adenine was formed prebiotically on the primitive earth, eutectic freezing of hydrogen cyanide solutions is likely to have been important. Here we revisit the suggestion that the synthesis of adenine may have involved the photochemical conversion of the tetramer of hydrogen cyanide in eutectic solution to 4-amino-5-cyano-imidazole. This would make possible a reaction sequence that does not require the presence of free ammonia. It is further suggested that the reaction of cyanoacetylene with cyanate in eutectic solution to give cytosine might have proceeded in parallel with adenine synthesis.

adenine eutectic freezing hydrogen cyanide tetramer photo-isomerization prebiotic synthesis pyrimidines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chyba, C. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origin of Life, Nature 355, 125–132.Google Scholar
  2. Cohn, C. A., Hannson, T. K., Larrson, H. S., Sowerby, S. J. and Holm, N. G.: 2001, Fate of Prebiotic Adenine, Astrobiology 1, 477–480.Google Scholar
  3. Ferris, J. P. and Orgel, L. E.: 1965, Aminomalononitrile and 4–Amino-5–Cyanoimidazole in Hydrogen Cyanide Polymerization and Adenine Synthesis, J. Amer. Chem. Soc. 87, 4976–4977.Google Scholar
  4. Ferris, J. P. and Orgel, L. E.: 1966a, An Unusual Photochemical Rearrangement in the Synthesis of Adenine from Hydrogen Cyanide, J. Amer. Chem. Soc. 88, 1074.Google Scholar
  5. Ferris, J. P. and Orgel, L. E.: 1966b, Studies in Prebiotic Synthesis I. Aminomalononitrile and 4–Amino-5–Cyanoimidazole, J. Amer. Chem. Soc. 88, 3829–3831.Google Scholar
  6. Ferris, J. P., Sanchez, R. A. and Orgel, L. E.: 1968, Studies in Prebiotic Synthesis, III. Synthesis of Pyrimidines from Cyanoacetylene and Cyanate, J. Mol. Biol. 33, 693–704.Google Scholar
  7. Gesteland, R. F., Cech, T. R. and Atkins, J. F. (eds): 1999, in The RNA World, 2nd ed., Cold Spring Harbor Press.Google Scholar
  8. Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.Google Scholar
  9. Kasting, J. F. and Brown, L. L.: 1998, in The Molecular Origins of Life, A. Brack (ed.), Cambridge University Press.Google Scholar
  10. Levine, J. S., Augustsson, T. R. and Nataranjen, M.: 1982, The Prebiotic Paleoatmosphere: Stability and Composition, Orig. Life Evol. Biosph. 12, 245–259.Google Scholar
  11. Miller, S. L.: 1957, The Mechanism of Synthesis of Amino Acids by Electric Discharges, Biochim. Biophys. Acta 23, 480–489.Google Scholar
  12. Miyakawa, S., Murasawa, K., Kobayashi, K. and Sawaoka, A. B.: 2000, Abiotic Synthesis of Guanine with High-Temperature Plasma, Orig. Life Evol. Biosph. 30, 557–566.Google Scholar
  13. Miyakawa, S., Cleaves, H. J. and Miller, S. L.: 2002a, The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide, Orig. Life Evol. Biosph. 32, 195–208.Google Scholar
  14. Miyakawa, S., Cleaves, H. J. and Miller, S. L.: 2002b, The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced from Frozen Ammonium Cyanide Solutions, Orig. Life Evol. Biosph. 32, 209–218.Google Scholar
  15. Nelson, K. E., Robertson, M. P., Levy, M. and Miller, S. L.: 2001, Concentration by Evaporation and the Prebiotic Synthesis of Cytosine, Orig. Life Evol. Biosph. 31, 221–229.Google Scholar
  16. Oro, J. and Kimball, A. P.: 1960, Synthesis of Adenine from Ammonium Cyanide, Biochim. Biophys. Res Commun. 2, 407–412.Google Scholar
  17. Oro, J.: 1961a, Mechanisms of Synthesis of Adenine from Hydrogen Cyanide Under Possible Primitive Earth Conditions, Nature 191, 1193–1194.Google Scholar
  18. Oro, J.: 1961b, Comets and the Formation of Biochemical Compounds on the Primitive Earth, Nature 190, 389–390.Google Scholar
  19. Oro, J. and Kimball, A. P.: 1961, Synthesis of Purines Under Possible Primitive Earth Conditions. I. Adenine from Hydrogen Cyanide, Arch. Biochem. Biophys. 94, 217–227.Google Scholar
  20. Oro, J. and Kimball, A. P.: 1962, Synthesis of Purines Under Possible Primitive Earth Conditions. II. Purine Intermediates from Hydrogen Cyanide, Arch. Biochem. Biophys. 96, 293–313.Google Scholar
  21. Robertson, M. P. and Miller, S. L.: 1995, An Efficient Prebiotic Synthesis of Cytosine and Uracil, Nature 375, 772–774.Google Scholar
  22. Sanchez, R. A., Ferris, J. and Orgel, L. E.: 1966a, Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures?, Science 153, 72–73.Google Scholar
  23. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1966b, Cyanoacetylene in Prebiotic Synthesis, Science 154, 784–785.Google Scholar
  24. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1967, Studies in Prebiotic Synthesis II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide, J. Mol. Biol. 30, 223–253.Google Scholar
  25. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1968, Studies in Prebiotic Syntheis IV. Conversion of 4–Aminoimidazole-5–Carbonitrile Derivatives to Purines, J. Mol. Biol. 38, 121–128.Google Scholar
  26. Schwartz, A. W., Joosten, H. and Voet, A. B.: 1982, Prebiotic Adenine Synthesis Via HCN Oligomerization in Ice, Biosystems 15, 191–193.Google Scholar
  27. Shapiro, R.: 1995, The Prebiotic Role of Adenine: A Critical Analysis, Orig. Life Evol. Biosph. 25, 83–98.Google Scholar
  28. Shapiro, R.: 1999, Prebiotic Cytosine Synthesis: A Critical Analysis and Implications for the Origin of Life, Proc. Natl. Acad. Sci, U.S.A. 96, 4396–4401.Google Scholar
  29. Shapiro, R.: 2002, Comments on Concentration by Evaporation and the Prebiotic Synthesis of Cytosine, Orig. Life Evol. Biosph. 32, 275–278.Google Scholar
  30. Stribling, R. and Miller, S. L.: 1987, Energy Yields to Hydrogen-Cyanide and Formaldehyde Syntheses: The HCN and Amino Acid Concentrations in the Primitive Ocean, Orig. Life Evol. Biosph. 17, 261–273.Google Scholar
  31. Voet, A. B. and Schwartz, A. W.: 1983, Prebiotic adenine synthesis from HCN-Evidence for a Newly Discovered Major Pathway, Biorg. Chem. 12, 8–17.Google Scholar
  32. Winter, D. and Zubay, G.: 1995, Binding of Adenine and Adenine-Related Compounds to the Clay Montmorillonite and the Mineral Hydronylapatite, Orig. Life Evol. Biosph. 25, 61–81.Google Scholar
  33. Zubay, G. and Mui, T.: 2001, Prebiotic Synthesis of Nucleotides, Orig. Life Evol. Biosph. 31, 87–102.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Leslie E. Orgel
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoU.S.A. (E-mail

Personalised recommendations