Origins of life and evolution of the biosphere

, Volume 34, Issue 3, pp 307–321

Causation and the Origin of Life. Metabolism or Replication First?

  • Addy Pross
Article

Abstract

The conceptual gulf that separates the `metabolism first' and `replication first' mechanisms forthe emergence of life continues to cloud the origin of life debate. In thepresent paper we analyze this aspect of the origin of life problem and offerarguments in favor of the `replication first' school. Utilizing Wicken'stwo-tier approach to causation we argue that a causal connectionbetween replication and metabolism can only be demonstrated if replication wouldhave preceded metabolism. In conjunction with existing empirical evidenceand theoretical reasoning, our analysis concludes that there is no substantiveevidence for a `metabolism first' mechanism for life's emergence, while acoherent case can be made for the `replication first' group of mechanisms.The analysis reaffirms our conviction that life is an extreme expression ofkinetic control, and that the emergence of metabolic pathways can beunderstood by considering life as a manifestation of `replicativechemistry'.

causation chemical evolution metabolism first molecular replication origin of life replication first teleology teleonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cairns-Smith, A. G.: 1985, Seven clues to the origin of life, Cambridge, Cambridge U.P.Google Scholar
  2. Chyba, C. F. and McDonald, G. D.: 1995, The Origin of Life in the Solar System: Current Issues, Annu. Rev. Earth Planet Sci. 23, 215–49.Google Scholar
  3. Cleland, C. E. and Chyba, C. F.: 2002, Defining ‘Life’, Orig. Life Evol. Biosph. 32, 387–393.Google Scholar
  4. Collier, J.: 1988, Entropy, Information, and Evolution, in B. H. Weber, D. J. Depew and J. D. Smith (eds), pp. 227–242, Cambridge, MIT Press.Google Scholar
  5. Corning, P. A. and Kline, J. K.: 1998, Thermodynamics, Information, and Life Revisited, Part 1: To Be Or Entropy, Syst. Res. 15, 273–295.Google Scholar
  6. Dyson, F.: 1985, Origins of Life, Cambridge, Cambridge U.P.Google Scholar
  7. Eigen, M.: 1971, Self-Organization of Matter and the Evolution of Biological Macromolecules, Naturwissenschaften 58, 465–523.Google Scholar
  8. Eigen, M.: 1992, Steps Toward Life: A Perspective on Evolution, Oxford, Oxford U.P.Google Scholar
  9. Elitzur, A. C.: 1994, Let There Be Life, J. Theor. Biol. 168, 429–459.Google Scholar
  10. Ferris, J. P. et al.: 1968, Studies in Prebiotic Synthesis. 3. Synthesis of Pyrimidines from Cyanoethylene and Cyanate, J. Mol. Biol. 33, 693–704.Google Scholar
  11. Fry, I.: 2000, The Emergence of Life on Earth, New Brunswick, Rutgers U.P.Google Scholar
  12. Helmont, J. B. van: 1648, Ortus Medicinae, Amsterdam, pp. 108–109; Translated in Great Experiments in Biology, M. L. Gabriel and S. Fogel (eds) p. 155, Englewood Cliffs, N.J., Prentice Hall.Google Scholar
  13. Johnston, W. K. et al.: 2001, RNA-catalyzed RNA Polymerization: Accurate and General RNA-Template Primer Extension, Science 292, 1319–1325.Google Scholar
  14. Joyce, G. F.: 1994, In Vitro Evolution of Nucleic Acids, Curr Opin. Struct. Biol. 4, 331–6.Google Scholar
  15. Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.Google Scholar
  16. Kant, I.: 1952, in: Critique of Judgement, R. Hutchins (ed.), Ch. 65. Chicago, Encyclopedia Brittanica Inc.Google Scholar
  17. Kasting, J. F.: 1993, Earth's Early Atmosphere, Science 259, 920–926.Google Scholar
  18. Kauffman, S. A.: 2000, Investigations, Oxford, Oxford U.P.Google Scholar
  19. Kauffman, S. A.: 1993, The Origins of Order. Self-Organization and Selection in Evolution, Oxford, Oxford U.P.Google Scholar
  20. Lahav, N.: 1999, Biogenisis. Theories of Life's Origins, Oxford, Oxford U.P.Google Scholar
  21. Lifson, S.: 1997, On the Crucial Stages in the Origin of Animate Matter, J. Mol. Evol. 44, 1–8.Google Scholar
  22. Maynard Smith, J. and Szathmáry, E.: 1995, The Major Transitions in Evolution, Oxford, Freeman.Google Scholar
  23. Mayr, E.: 1988, Toward a New Philosophy of Biology, p. 44, Cambridge, Harvard U.P.Google Scholar
  24. Melosh, H. J.: 1988, The Rocky Road to Panspermia, Nature, 332, 687–8.Google Scholar
  25. Miller, S. L. and Lazcano, A.: 1995, The Origin of Life — Did it Occur at hHgh Temperatures? J. Mol. Evol. 41, 689–692.Google Scholar
  26. Miller, S. L. and Lazcano, A.: 1996, The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time, Cell 85, 793–798.Google Scholar
  27. Mizuno, T. and Weiss, A. H.: 1974, Synthesis and Utilisation of Formose Sugars, Adv. Carbohyd. Chem. Biochem. 29, 173–227.Google Scholar
  28. Monod, J.: 1972, Chance and Necessity, London, Collins.Google Scholar
  29. New, M. H. and Pohorille, A.: 2000, An Inherited Efficiencies Model of Non-Genomic Evolution, Simulation Practice Theory 8, 99–108.Google Scholar
  30. Oparin, A. I.: 1957, The Origin of Life on Earth, 3rd ed., Edinburgh, Oliver and Boyd.Google Scholar
  31. Orgel, L. E.: 2000, Self-Organizing Biochemical Cycles, Proc. Nat. Acad. Sci. USA 97, 12503–12507.Google Scholar
  32. Orgel, L. E.: 1998, The Origin of Life — A Review of Facts and Speculations, TIBS 23, 491–5.Google Scholar
  33. Orgel, L. E.: 1992, Molecular Replication, Nature 358, 203–209.Google Scholar
  34. Oro, J.: 1961, Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions, Nature 191, 1193–4.Google Scholar
  35. Pitsch, S. et al.: 1995, Mineral Induced Formation of Sugar Phosphates, Orig. Life Evol. Biosph. 25, 297–334.Google Scholar
  36. Pross, A.: 2003, The Driving Force for Life's Emergence. Kinetic and Thermodynamic Considerations, J. Theor. Biol. 220, 393–406.Google Scholar
  37. Pross, A. and Khodorkovsky, V.: 2004, Extending the Concept of Kinetic Stability: Toward a Paradigm for Life, J. Phys. Org. Chem., in press.Google Scholar
  38. Putnam, H.: 1973, Meaning and Reference, J. Philos. 70, 699–711.Google Scholar
  39. Rebek, J., Jr.: 1994, A Template for Life, Chem. Ber. 30, 286–90.Google Scholar
  40. Robertson, M. P. and Miller S. L.: 1995, An Efficient Prebiotic Synthesis of Cytosine and Uracil, Nature 375, 772–4.Google Scholar
  41. Sanchez, R. A. et al.: 1967, Studies in Prebiotic Synthesis. II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide, J. Mol. Biol. 30, 223–53.Google Scholar
  42. Schwartz, S. P.: 1977, Introduction, in Naming, Necessity and Natural Kinds, S. P. Schwartz (ed.), Ithaca NY, Cornell U. P.Google Scholar
  43. Segre, D. et al.: 2000, Compositional Genomes: Prebiotic Information Transfer in Mutually Catalytic Noncovalent Assemblies, Proc. Nat. Acad. Sci. USA 97, 4112–7.Google Scholar
  44. Shapiro, R.: 1984, The Improbability of Prebiotic Nucleic Acid Synthesis, Origins Life Evol. Biosphere 14, 565–70.Google Scholar
  45. Shapiro, R.: 2000, A Replicator was not Involved in the Origin of Life, IUBMB Life 49, 173–6.Google Scholar
  46. Sievers, D. and von Kiedrowski, G.: 1994, Self-Replication of Complimentary Nucleotide-Based Oligomers, Nature 369, 221–4.Google Scholar
  47. Spiegelman, S.: 1967, An In Vitro Analysis of a Replicating Molecule, American Scientist 55, 221–64.Google Scholar
  48. Stoks, P. G. and Schwartz, A. W.: 1979, Uracil in Carbonaceous Meteorites, Nature 282, 709–10.Google Scholar
  49. Wächtershäuser, G.: 1992, Groundworks for an Evolutionary Biochemistry: The Iron Sulfur World, Prog. Biophys. Mol. Biol. 58, 85–201.Google Scholar
  50. Wächtershäuser G.: 1997, The Origin of Life and Its Methodological Challenge, J. Theor. Biol. 187, 483–494.Google Scholar
  51. Wicken, J. S.: 1985, Thermodynamics and the Conceptual Structure of Evolutionary Theory, J. Theor. Biol. 117, 363–383.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Addy Pross
    • 1
  1. 1.Department of ChemistryBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations