Monte Carlo Simulations of Vesicles and Fluid Membranes Transformations



The appearance of compartmentalization is recognized as a key step in biogenesis. The study of the dynamical behaviour of amphiphilic close membranes at equilibrium or under some external stress (osmotic pressure or dehydration process) can be useful in order to better elucidate the role of vesicles in the origin of life and to get insight into the molecular and membrane properties that bring to a spontaneous vesicle division. A Monte Carlo approach to simulate the evolution of close membranes under an external stress will be presented. This approach is mainly based on the accepted surface energy model introduced by Helfrich (1973) and Seifert (1997a). Some preliminary results will be also illustrated and possible developments and limits of this method discussed.

Monte Carlo origin of life simulation vesicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann, P. A., Luisi, P. L. and Lang, J.: 1992, Autocatalytic Self-Replication Micelles as Model for Prebiotic Structures, Nature 357, 57–59.Google Scholar
  2. Ben-Shaul, A.: 1996, The ‘New’ Science of ‘Complex fluid’, J. Phys. Chem 100.Google Scholar
  3. Blöchliger, E., Blocher, M., Walde, P. and Luisi, P. L.: 1998, Matrix Effect in the Size Distribution of Fatty Acid Vesicles, J. Phys. Chem. B 102, 10383–10390.Google Scholar
  4. Brakke, K. A.: 1992, The Surface Evolver, Experimental Mathematics 1(2), 141–165.Google Scholar
  5. Deamer, D. W. and Barchfeld, G. L.: 1982, Encapsulation of Macromolecules by Lipid Vesicles under Simulated Prebiotic Conditions, J. Mol. Evol. 18, 203–206.Google Scholar
  6. Deamer, D. W. and Oro', J.: 1980, Role of Lipids in Prebiotic Structures, BioSystems 12, 167–175.Google Scholar
  7. Döbereiner, H.-G., Evans, E., Kraus, M., Seifert, U. and Wortis, M.: 1997, Mapping Vesicle Shapes into the Phase Diagram: A Comparison of Experiment and Theory, Physical Review 55(4), 4458–4474.Google Scholar
  8. Döbereiner, H.-G., Kas, J., Noppl, D., Sprenger, I. and Sackmann, E.: 1993, Budding and Fission of Vesicles, Biophys. J. 65(4), 1396–1403.Google Scholar
  9. Fleischhaker, G. R.: 1990, Origins of Life: An Operational Definition, Orig. Life Evol. Biosphere 20, 127–137.Google Scholar
  10. Goetz, R. and Lipowsky, R.: 1998, Computer Simulations of Bilayer Membranes: Self-Assembly and Interfacial Tension, Journal of Chemical Physics 108(17), 7397–7409.Google Scholar
  11. Goldrach, R. J.: 1958. Surface Films: Their Collapse on Compression, the Shape and Size of Cells, and the Origin of Life, Surface Phenomena in Biology and Chemistry, Pergamon Press, New York.Google Scholar
  12. Helfrich, W.: 1973, Elastic Properties of Lipid Bilayers: Theory and Possible Experiments, Z. Naturforsch. [C] 28(11), 693–703.Google Scholar
  13. Koibuchi, H. and Yamada, M.: 2000a, Phase Transition of a Model of Crystalline Membrane, International Journal of Modern Physics C 11(3), 1509–1518.Google Scholar
  14. Koibuchi, H. and Yamada, M.: 2000b, Phase Transition of a Model of Fluid Membrane, International Journal of Modern Physics C 11(3), 441–450.Google Scholar
  15. Kralj-Iglic, V., Heinrich, V., Svetina, S. and Zeks, B.: 1999, Free Energy of Closed Membrane with Anisotropic Inclusions, Eur. Phys. J. B 10, 5–8.Google Scholar
  16. Lindahl, E. and Edholm, O.: 2000, Mesoscopic Undulations and Thickness Fluctuations in Lipid Bilayers from Molecular Dynamics Simulations, Biophysical Journal 79(1), 426–433.Google Scholar
  17. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.: 1953, J. Chem. Phys. 21, 1087.Google Scholar
  18. Morowitz, H. J., Heinz, B. and Deamer, D. W.: 1988, The Chemical Logic of a Minimum Protocell, Orig. Life Evol. Biosphere 18, 281–287.Google Scholar
  19. Ourisson, G. and Nakatani, Y.: 1999, Addendum, Tetrahedron 55(11), 3183–3190.Google Scholar
  20. Piotto, S. P.: 2000. A Novel Surface Approach to Treat and Analyse Membranes, Micelles, Vesicles and their Transitions, Swiss Federal Institute of Technology, Zuerich.Google Scholar
  21. Piotto, S. P. and Mavelli, F.: 2003, Monte Carlo Simulation of Curved Flexible Membranes, in preparation.Google Scholar
  22. Polyakov, A. M.: 1986, Fine Structure of Strings, Nucl. Phys. B 268, 406.Google Scholar
  23. Seifert, U.: 1997a, Configurations of Fluid Membranes and Vesicles, Advances in Physics 46(1), 13–137.Google Scholar
  24. Seifert, U.: 1997b, Dynamics of Giant Vesicles, Mol. Cryst. Liq. Cryst. 292, 213–225.Google Scholar
  25. Seifert, U. and Wintz, W.: 1996, Starfish Vesicles, Europhysics Letters 33(5), 403–408.Google Scholar
  26. Singer, S. J. and Nicolson, G. L.: 1972, The Fluid Mosaic Model of the Structure of Cell Membranes, Science 175, 720–731.Google Scholar
  27. Small, D. M.: 1986, The Physical Chemistry of Lipids, Plenum Press, New York.Google Scholar
  28. Tieleman, D. P., Marrink, S. J. and Berendsen, H. J. C.: 1997, A Computer Perspective of Membranes: Molecular Dynamics Studies of Lipid Bilayer Systems, Biochimica et Biophysica Acta (BBA) — Reviews on Biomembranes 1331(3), 235–270.Google Scholar
  29. Wick, R., Walde, P. and Luisi, P. L.: 1995, Autocatalysis and Self-Reproduction of Giant Vesicles, J. Am. Chem. Soc. 117, 1435–1436.Google Scholar
  30. Wick R., Walde, P. and Luisi P. L.: 1995, Autocatalysis and Self-Reproduction of Giant Vesicles, J. Am. Chem. Soc. 117, 1435–1436.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute for Inorganic Chemistry, ETH Hoenggerberg, Wolfgang-Pauli-Strasse 10ZürichSwitzerland
  2. 2.Dipartimento di ChimicaUniversity of BariBariItaly

Personalised recommendations