Prospects of a Computational Origin of Life Endeavor

  • Barak Shenhav
  • Doron LancetEmail author


While the last century brought an exquisite understanding of the molecular basis of life, very little is known about the detailed chemical mechanisms that afforded the emergence of life on early earth. There is a broad agreement that the problem lies in the realm of chemistry, and likely resides in the formation and mutual interactions of carbon-based molecules in aqueous medium. Yet, present-day experimental approaches can only capture the synthesis and behavior of a few molecule types at a time. On the other hand, experimental simulations of prebiotic syntheses, as well as chemical analyses of carbonaceous meteorites, suggest that the early prebiotic hydrosphere contained many thousands of different compounds. The present paper explores the idea that given the limitations of test-tube approaches with regards to such a `random chemistry' scenario, an alternative mode of analysis should be pursued. It is argued that as computational tools for the reconstruction of molecular interactions improve rapidly, it may soon become possible to perform adequate computer-based simulations of prebiotic evolution. We thus propose to launch a computational origin of life endeavor (, involving computer simulations of realistic complex prebiotic chemical networks. In the present paper we provide specific examples, based on a novel algorithmic approach, which constitutes a hybrid of molecular dynamics and stochastic chemistry. As one potential solution for the immense hardware requirements dictated by this approach, we have begun to implement an idle CPU harvesting scheme, under the title ool@home.

molecular dynamics stochastic chemistry ool@home chemical network computational origin of life random chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami, C.: 1998, Introduction to Artificial Life, Springer Verlag, New York.Google Scholar
  2. Alves, D., Campos, P. R. A., Silva, A. T. C. and Fontanari, J. F.: 2001, Group Selection Models in Prebiotic Evolution, Physical Review E 6301, art. no.-011911.Google Scholar
  3. Anders, E.: 1989, Pre-Biotic Organic Matter from Comets and Asteroids, Nature 342, 255–257.Google Scholar
  4. Bachmann, P. A., Luisi, P. L. and Lang, J.: 1992, Autocatalytic Self-Replicating Micelles as Models for Prebiotic Structures, Nature 357, 57–59.Google Scholar
  5. Bagley, R. J. and Farmer, J. D.: 1991, Spontaneous Emergence of a Metabolism, in Langton, C. G., Tylor, C., Farmer, J. D. and Rasmussen, S. (eds), Artificial Life II, Addison-Wesley, pp. 93–140.Google Scholar
  6. Banerjee, N. and Zhang, M. Q.: 2002, Functional Genomics as Applied to Mapping Transcription Regulatory Networks, Curr. Opin. Microbiol. 5, 313–317.Google Scholar
  7. Basile, B., Lazcano, A. and Oro, J.: 1984, Prebiotic Syntheses of Purines and Pyrimidines, Adv. Space Res. 4, 125–131.Google Scholar
  8. Bertschinger, E.: 1998, Simulations of Structure Formation in the Universe, Annual Review of Astronomy and Astrophysics 36, 599–654.Google Scholar
  9. Briggs, M. H. and Mamikunian, G.: 1964, Organic Constituents of Carbonaceous Chondrites, Life Sci. Space Res. 2, 57–85.Google Scholar
  10. Broadbelt, L. J., Stark, S. M. and Klein, M. T.: 1994, Computer-Generated Pyrolysis Modeling — on-the-Fly Generation of Species, Reactions, and Rates, Industrial & Engineering Chemistry Research 33, 790–799.Google Scholar
  11. Bures, M. G. and Martin, Y. C.: 1998, Computational Methods in Molecular Diversity and Combinatorial Chemistry, Curr. Opin. Chem. Biol. 2, 376–380.Google Scholar
  12. Bytautas, L. and Klein, D. J.: 1999, Alkane Isomer Combinatorics: Stereostructure Enumeration and Graph-Invariant and Molecular-Property Distributions, Journal of Chemical Information and Computer Sciences 39, 803–818.Google Scholar
  13. Christensen, B. and Nielsen, J.: 2000, Metabolic Network Analysis. A Powerful Tool in Metabolic Engineering, Adv. Biochem. Eng. Biotechnol. 66, 209–231.Google Scholar
  14. Cohen, J. and Stewart, I.: 2002, Evolving the Alien, Ebury Press, London.Google Scholar
  15. Davies, E. K., Glick, M., Harrison, K. N. and Richards, W. G.: 2002, Pattern Recognition and Massively Distributed Computing, Journal of Computational Chemistry 23, 1544–1550.Google Scholar
  16. De Duve, C.: 1998, Constraints on the Origin and Evolution of Life, Proc. Am. Philos. Soc. 142, 525–532.Google Scholar
  17. De Oliveira, V. M. and Fontanari, J. F.: 2001, Extinctions in the Random Replicator Model, Physical Review E 6405, art. no.-051911.Google Scholar
  18. Deamer, D. W. and Oro, J.: 1980, Role of Lipids in Prebiotic Structures, Biosystems 12, 167–175.Google Scholar
  19. Deamer, D.W. and Pashley, R. M.: 1989, Amphiphilic Components of the Murchison Carbonaceous Chondrite: Surface Properties and Membrane Formation, Orig. Life Evol. Biosph. 19, 21–38.Google Scholar
  20. Dessy, R. E.: 1996, New Reagents, New Reactions: Computers in Chemistry, Technology in Society 18, 137–149.Google Scholar
  21. Editorial: 1998, Net News:... and a Search for Alien Life, Science 282, 853.Google Scholar
  22. Eigen, M.: 1971, Selforganization of Matter and the Evolution of Biological Macromolecules, Naturwissenschaften 58, 465–523.Google Scholar
  23. Eigen, M. and Schuster, P.: 1979, The Hypercycle, Springer, Berlin.Google Scholar
  24. Farmer, J. D., Kauffman, S. A. and Packard, N. H.: 1986, Autocatalytic Replication of Polymers, Physica D 22, 50–67.Google Scholar
  25. Ferris, J. P. and Hagan, W. J., Jr.: 1984, HCN and Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis, Tetrahedron 40, 1093–1120.Google Scholar
  26. Fontana, W. and Buss, L. W.: 1994, What Would-Be Conserved If the Tape Were Played Twice, Proceedings of the National Academy of Sciences of the United States of America 91, 757–761.Google Scholar
  27. Frenk, C. S.: 2002, Simulating the Formation of Cosmic Structure, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 360, 1277–1294.Google Scholar
  28. Frisch, M. J. and Trucks, G. W., et al.: 2001, Gaussian 98 (Revision A.10), Gaussian, Inc., Pittsburgh PA.Google Scholar
  29. Gibson, M. A. and Bruck, J.: 2000, Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels, Journal of Physical Chemistry A 104, 1876–1889.Google Scholar
  30. Gillespie, D. T.: 1976, General Method for Numerically Simulating Stochastic Time Evolution of Coupled Chemical-Reactions, Journal of Computational Physics 22, 403–434.Google Scholar
  31. Gillespie, D. T.: 2001, Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems, Journal of Chemical Physics 115, 1716–1733.Google Scholar
  32. Goetz, R. and Lipowsky, R.: 1998, Computer Simulations of Bilayer Membranes: Self-Assembly and Interfacial Tension, Journal of Chemical Physics 108, 7397–7409.Google Scholar
  33. Gueron, S.: 2001, Deterministic Approximations for Stochastic Processes in Population Biology, Future Generation Computer Systems 17, 893–899.Google Scholar
  34. Hasegawa, T. I., Herbst, E. and Leung, C. M.: 1992, Models of Gas-Grain Chemistry in Dense Interstellar Clouds with Complex Organic-Molecules, Astrophysical Journal Supplement Series 82, 167–195.Google Scholar
  35. Ideker, T., Galitski, T. and Hood, L.: 2001, A New Approach to Decoding Life: Systems Biology, Annu. Rev. Genomics Hum. Genet. 2, 343–372.Google Scholar
  36. Jansen, A. P. J. and Lukkien, J. J.: 1999, Dynamic Monte-Carlo Simulations of Reactions in Heterogeneous Catalysis, Catalysis Today 53, 259–271.Google Scholar
  37. Jemmer, P.: 1999, Symbolic Algebra in the Analysis of Dynamic Chemical-Kinetic Systems, Mathematical and Computer Modelling 30, 33–47.Google Scholar
  38. Kam, N., Marelly, R., Kugler, H., Pnueli, A., Harel, D., Hubbard, E. J. and Stern, M. J.: 2003, Formal Modeling of C. Elegans Development: A Scenario-Based Approach in Priami, C. (ed.), Proceedings of First International Workshop on Computational Methods in Systems Biology (CMSB), Rovereto, Italy, Lecture Notes in Computer Science 2602, pp. 4–20.Google Scholar
  39. Kauffman, S. A.: 1993, The Origin of Order, Oxford University Press.Google Scholar
  40. Kust, P. R. and Rathman, J. F.: 1995, Synthesis of Surfactants by Micellar Autocatalysis — N,N-Dimethyldodecylamine N-Oxide, Langmuir 11, 3007–3012.Google Scholar
  41. Lancet, D., Kedem, O. and Pilpel, Y.: 1994, Emergence of Order in Small Autocatalytic Sets Maintained Far from Equilibrium — Application of a Probabilistic Receptor Affinity Distribution (RAD) Model, Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 98, 1166–1169.Google Scholar
  42. Lancet, D., Sadovsky, E. and Seidemann, E.: 1993, Probability Model for Molecular Recognition in Biological Receptor Repertoires — Significance to the Olfactory System, Proceedings of the National Academy of Sciences of the United States of America 90, 3715–3719.Google Scholar
  43. Lander, E. S., Linton, L. M., et al.: 2001, Initial Sequencing and Analysis of the Human Genome, Nature 409, 860–921.Google Scholar
  44. Lawless, J. G.: 1980, Organic Compounds in Meteorites, Life Sci. Space Res. 18, 19–27.Google Scholar
  45. Lazcano, A. and Miller, S. L.: 1996, The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time, Cell 85, 793–798.Google Scholar
  46. Lindahl, E. and Edholm, O.: 2000, Mesoscopic Undulations and Thickness Fluctuations in Lipid Bilayers from Molecular Dynamics Simulations, Biophysical Journal 79, 426–433.Google Scholar
  47. Loew, L. M. and Schaff, J. C.: 2001, The Virtual Cell: A Software Environment for Computational Cell Biology, Trends Biotechnol. 19, 401–406.Google Scholar
  48. Lukkien, J. J., Segers, J. P. L., Hilbers, P. A. J., Gelten, R. J. and Jansen, A. P. J.: 1998, Efficient Monte Carlo Methods for the Simulation of Catalytic Surface Reactions, Physical Review E 58, 2598–2610.Google Scholar
  49. Marrink, S. J. and Mark, A. E.: 2002, Molecular Dynamics Simulations of Mixed Micelles Modeling Human Bile, Biochemistry 41, 5375–5382.Google Scholar
  50. Maseras, F. and Morokuma, K.: 1995, Imomm — A New Integrated Ab-Initio Plus Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition-States, Journal of Computational Chemistry 16, 1170–1179.Google Scholar
  51. Maurette, M.: 1998, Carbonaceous Micrometeorites and the Origin of Life, Orig. Life Evol. Biosph. 28, 385–412.Google Scholar
  52. Miller, S. L.: 1953, A Production of Amino Acids under Possible Earth Conditions, Science 117, 528–529.Google Scholar
  53. Miller, S. L.: 1986, Current Status of the Prebiotic Synthesis of Small Molecules, Chem. Scr. 26B, 5–11.Google Scholar
  54. Miller, S. L. and Urey, H. C.: 1959, Organic Compond Synthesis on the Primitive Earth, Science 130, 245–251.Google Scholar
  55. Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J. and Miller, S. L.: 2002, Prebiotic Synthesis from CO Atmospheres: Implications for the Origins of Life, Proc. Natl. Acad. Sci. U.S.A..Google Scholar
  56. Moore, G. E.: 1965, Cramming More Components onto Integrated Circuits, Electronica 38.Google Scholar
  57. Morowitz, H. J.: 1992, Beginnings of Cellular Life, Yale University Press, London.Google Scholar
  58. Nir, S. and Lahav, N.: 1997, Emergence of Template-and-Sequence-directed (TSD) Syntheses. 2. A Computer Simulation Model, Orig. Life Evol. Biosphere 27, 567–588.Google Scholar
  59. Pohorille, A. and Benjamin, I.: 1993, Structure and Energetics of Model Amphiphilic Molecules at the Water Liquid Vapor Interface — A Molecular-Dynamics Study, Journal of Physical Chemistry 97, 2664–2670.Google Scholar
  60. Pohorille, A. and Wilson, M. A.: 1995, Molecular-Dynamics Studies of Simple Membrane Water Interfaces — Structure and Functions in the Beginnings of Cellular Life, Orig. Life Evol. Biosphere 25, 21–46.Google Scholar
  61. Reder, C.: 1990, Analysis of Multiscale Biochemical Systems: Graph Methods, Biomed. Biochim. Acta 49, 671–680.Google Scholar
  62. Rosenwald, S., Kafri, R. and Lancet, D.: 2002, Test of a Statistical Model for Molecular Recognition in Biological Repertoires, Journal of Theoretical Biology 216, 327–336.Google Scholar
  63. Schneider, G. and Bohm, H. J.: 2002, Virtual Screening and Fast Automated Docking Methods, Drug Discov. Today 7, 64–70.Google Scholar
  64. Schuler, L. D., Walde, P., Luisi, P. L. and van Gunsteren, W. F.: 2001, Molecular Dynamics Simulation of n-Dodecyl Phosphate Aggregate Structures, Eur. Biophys. J. 30, 330–343.Google Scholar
  65. Segre, D., Ben-Eli, D., Deamer, D. W. and Lancet, D.: 2001, The Lipid World, Orig. Life Evol. Biosphere 31, 119–145.Google Scholar
  66. Segre, D., Ben-Eli, D. and Lancet, D.: 2000, Compositional Genomes: Prebiotic Information Transfer in Mutually Catalytic Noncovalent Assemblies, Proceedings of the National Academy of Sciences of the United States of America 97, 4112–4117.Google Scholar
  67. Segre, D. and Lancet, D.: 1999, A Statistical Chemistry Approach to the Origin of Life, Chemtracts — Biochemistry and Molecular Biology 12, 382–397.Google Scholar
  68. Segre, D. and Lancet, D.: 2000, Composing Life, Embo Reports 1, 217–222.Google Scholar
  69. Sephton, M. A.: 2002, Organic Compounds in Carbonaceous Meteorites, Nat. Prod. Rep. 19, 292–311.Google Scholar
  70. Shenhav, B. and Lancet, D.: 2002, OOL@Home — Origin of Life at Home!!! ISSOL Spring News Letter.Google Scholar
  71. Shenhav, B., Kafri, R. and Lancet, D.: 2003a, The transition from Compositional to Polymer-Based Replication, Orig. Life Evol. Biosphere 33, 267.Google Scholar
  72. Shenhav, B., Segre, D. and Lancet, D.: 2003b, Mesobiotic Emergence: Molecular Assemblies that Self-Replicate without Biopolymers, Adv. Complex Syst. 6, 15–35.Google Scholar
  73. Shirts, M. and Pande, V. S.: 2000, Computing — Screen Savers of the World Unite! Science 290, 1903–1904.Google Scholar
  74. Sipper, M.: 2002, Machine Nature: The Coming Age of Bio-Inspired Computing, McGraw-Hill, New York.Google Scholar
  75. Sipper, M. and Reggia, J. A.: 2001, Go Forth and Replicate, Scientific American 265, 26–35.Google Scholar
  76. Smolen, P., Baxter, D. A. and Byrne, J. H.: 2000, Modeling Transcriptional Control in Gene Networks — Methods, Recent Results, and Future Directions, Bull. Math. Biol. 62, 247–292.Google Scholar
  77. Sponer, J., Leszczynski, J. and Hobza, P.: 1996, Hydrogen Bonding and Stacking of DNA Bases: A Review of Quantum-Chemical ab initio Studies, J. Biomol. Struct. Dyn. 14, 117–135.Google Scholar
  78. Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S. and Morokuma, K.: 1996, ONIOM: A Multilayered Integrated MO+MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)(3))(2)+H-2 Oxidative Addition, Journal of Physical Chemistry 100, 19357–19363.Google Scholar
  79. Tieleman, D. P., Marrink, S. J. and Berendsen, H. J. C.: 1997, A Computer Perspective of Membranes: Molecular Dynamics Studies of Lipid Bilayer Systems, Biochimica et Biophysica Acta (BBA) — Reviews on Biomembranes 1331, 235–270.Google Scholar
  80. Tomita, M.: 2001, Whole-Cell Simulation: A Grand Challenge of the 21st Century, Trends Biotechnol. 19, 205–210.Google Scholar
  81. Tuckerman, M. E. and Martyna, G. J.: 2000, Understanding Modern Molecular Dynamics: Techniques and Applications, Journal of Physical Chemistry B 104, 159–178.Google Scholar
  82. Venter, J. C. and Adams, M. D., et al.: 2001, The Sequence of the Human Genome, Science 291, 1304–1351.Google Scholar
  83. Vereecken, L., Huyberechts, G. and Peeters, J.: 1997, Stochastic Simulation of Chemically Activated Unimolecular Reactions, Journal of Chemical Physics 106, 6564–6573.Google Scholar
  84. Voller, V. R. and Porte-Agel, F.: 2002, Moore's Law and Numerical Modeling, Journal of Computational Physics 179, 698–703.Google Scholar
  85. Walde, P., Wick, R., Fresta, M., Mangone, A. and Luisi, P. L.: 1994, Autopoietic Self-Reproduction of Fatty-Acid Vesicles, Journal of the American Chemical Society 116, 11649–11654.Google Scholar
  86. Wilke, C. O. and Adami, C.: 2002, The Biology of Digital Organisms, Trends in Ecology & Evolution 17, 528–532.Google Scholar
  87. Wills, C. and Bada, J.: 2001, The Spark of Life: Darwin and the Primeval Soup, Perseus Publishing.Google Scholar
  88. Zagrovic, B., Snow, C. D., Shirts, M. R. and Pande, V. S.: 2002a, Simulation of Folding of a Small alpha-Helical Protein in Atomistic Detail Using Worldwide-Distributed Computing, Journal of Molecular Biology 323, 927–937.Google Scholar
  89. Zagrovic, B., Sorin, E. and Pande, V.: 2002b, Distributed Computing Simulations of Folding of beta Hairpin from Protein G and Villin Headpiece, Biophysical Journal 82, 474a–474a.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Molecular Genetics and the Crown Human Genome Centerthe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations