Organic Aerosols and the Origin of Life: An Hypothesis

  • D. J. Donaldson
  • H. Tervahattu
  • A. F. Tuck
  • V. Vaida
Article

Abstract

Recent experimental work has verified the prediction that marine aerosols could have an exterior film of amphiphiles; palmitic, stearic and oleic acids were predominant. Thermodynamic analysis has revealed that such aerosols are energetically capable of asymmetric division. In a prebiotic terrestrial environment, one of the products of such aerosol fission would have been bacterially sized (microns), the other would have been virally sized (tens of nanometers). Plausible avenues for chemical differentiation between the two particles are discussed, and the probabilities for the transition from geochemistry to biochemistry updated in light of recent palaeo fossil studies.

marine aerosols fission bacteria virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.: 1997, Gas Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes J. Phys. Chem. Ref. Data 26, 214–290.Google Scholar
  2. Bertram, A. K., Ivanov, A. V., Hunter, M., Molina, L. T. and Molina, M. J.: 2001, The Reaction-probability of OH on Organic Surfaces of Tropospheric Interest, J. Phys. Chem. A 105, 9415–9421.Google Scholar
  3. Blanchard, D. C.: 1964, Sea-to-Air Transport of Surface Active Material, Prog. Oceanog. 1, 71–202.Google Scholar
  4. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., van Kranendonk, M. J., Lindsay, J. F., Steele, A. and Grassineau, N. V.: 2002, Questioning the Evidence for Earth's Oldest Fossils, Nature 416, 76–81.Google Scholar
  5. Chamberlin, T. C. and Chamberlin R. T.: 1908, Early Terrestrial Conditions that may have Favoured Organic Synthesis, Science 28, 897–911.Google Scholar
  6. Cronin, J. R.: 1998, Clues from the Origin of the Solar System:Meteorites, Chapter 6, The Molecular Origins of Life, Cambridge University Press, pp. 119–146.Google Scholar
  7. Deamer, D. W.: 1997, The First Living Systems: A Bioenergetic Perspective, Microbiol. Mol. Biol. Revs. 61, 239–261.Google Scholar
  8. Demou, E. and Donaldson, D. J.: 2002, Adsorption of Atmospheric Gases at the Air-water Interface. 4. The Influence of Salts, J. Phys. Chem. A 106, 982–987.Google Scholar
  9. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. and Jacobson, K.: 2001, Partitioning of Thy-1, GM1, and Cross-Linked Phospholipid Analogs into Lipid Rafts Reconstituted in Supported Model Membrane Layers, Proc. Nat. Acad. Sci. 98, 10642–10647.Google Scholar
  10. Dobson, C. M., Ellison, G. B., Tuck, A. F. and Vaida, V.: 2000, Atmospheric Aerosols as Prebiotic Chemical Reactors, Proc. Nat. Acad. Sci. 97, 11864–11868.Google Scholar
  11. Donaldson, D. J. and Anderson, D.: 1999, Adsorption of Atmospheric Gases at the Air-Water Interface. 2. C1-C4 Alcohols, Acids and Acetone, J. Phys. Chem. A 103, 871–876.Google Scholar
  12. Donaldson, D. J., Tuck, A. F. and Vaida, V.: 2001, Spontaneous Fission of Atmospheric Aerosol Particles, Phys. Chem. Chem. Phys. 3, 5270–5273.Google Scholar
  13. Donaldson, D. J., Tuck, A. F. and Vaida, V.: 2002, The Asymmetry of Organic Aerosol Fission and Prebiotic Chemistry, Orig. Life Evol. Biosph. 32, 237–245.Google Scholar
  14. Dyson, F. J.: 1985, 1999, Origins of Life, 1st and 2nd Editions, Cambridge University Press.Google Scholar
  15. Ellison, G. B., Tuck, A. F. and Vaida, V.: 1999, Atmospheric Processing of Organic Aerosols, J. Geophys. Res. 104, 11633–11642.Google Scholar
  16. Gao, J., Luedtke, W. D. and Landman, U.: 1997, Origin of Solvation Forces in Confined Films, J. Phys. Chem. B 101, 4013–4023.Google Scholar
  17. Gee, G. and Rideal, E. K.: 1936, Reactions in Monolayers of Drying Oils. I. The Oxidation of the Maleic Anhydride Compound of β-Elaeosterin. II. Polymerization of the Oxidized Forms of the Maleic Anhydride Compound of β-elaeosterin, Proc. Roy. Soc. A 153, 116–128, 129–141.Google Scholar
  18. Goldacre, R. J.: 1958, Surface Films, their Collapse on Compression, the Shapes and Sizes of Cells and the Origin of Life, in J. F. Danielli, K. G. A. Parkhurst and A. C. Riddiford (eds.), Surface Phenomena in Chemistry and Biology, Pergamon Press, pp. 278–298.Google Scholar
  19. Goody, R. M. and Walker, J. C. G.: 1972, Atmospheres, pp. 25–27.Google Scholar
  20. Haselmann, C. and Laustriat, G.: 1973, Photochimie des acides amines aromatiques en solution — I. DL-phenylalanine, DL-tyrosine et L-dopa, Photochem. Photobiol. 17, 275–294.Google Scholar
  21. Kerr, J. A. and Trotman-Dickinson, A. F.: 1961, The Reactions of Alkyl Radicals, in G. Porter (ed.), Progress in Reaction Kinetics 1, Chapter 4, Pergamon Press, pp. 105–128.Google Scholar
  22. Leathard, D. A. and Purnell, J. H.: 1970, Paraffin Pyrolysis, Ann. Rev. Phys. Chem. 21, 197–224.Google Scholar
  23. Lerman, L.: 1986, Potential Role of Bubbles and Droplets in Primordial and Planetary Chemistry: Exploration of the Liquid-Gas Interface as a Reaction Zone for Condensation Processes, Orig. Life Evol. Biosph. 16, 201–202.Google Scholar
  24. Lerman, L.: 1992, The Liquid-Gas Interface as a Reaction Zone for Condensation Processes: Bubbles and Droplets in Primordial and Planetary Chemistry, M.S. Thesis, Stanford University.Google Scholar
  25. Lerman, L.: 1994, The Bubble-Aerosol Droplet Cycle as a Natural Reactor for Prebiotic Organic Chemistry (I), Orig. Life Evol. Biosph. 24, 111–112.Google Scholar
  26. Lerman, L.: 1996, The Bubble-Aerosol-Droplet Cycle: A Prebiotic Geochemical Reactor, Orig. Life Evol. Biosph. 26, 369–370.Google Scholar
  27. Lipowsky, R.: 1991, The Conformation of Membranes, Nature 349, 475–481.Google Scholar
  28. Marquez, C., Lazcano, A., Miller, S. L. and Oro, J.: 1996, Fully Deuterated Aliphatic Hydrocarbons Obtained from Iron Carbide Treated with DCl and D2O, Orig. Life Evol. Biosph. 26, 450–451.Google Scholar
  29. Mason, B. J.: 1954, Bursting of Air Bubbles at the Surface of Sea Water, Nature 174, 470–471.Google Scholar
  30. Miller, S. L.: 1998, The Endogenous Synthesis of Organic Compounds, Chapter 3, The Molecular Origins of Life, Cambridge University Press, pp. 59–85.Google Scholar
  31. Mijakawa, S., Cleaves, H. J. and Miller, S. L.: 2002, The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced from Frozen Ammonium Cyanide Solutions, Orig. Life Evol. Biosph. 32, 209–218.Google Scholar
  32. Murphy, D. M., Thomson, D. S. and Mahoney, M. J.: 1998, In situ Measurements of Organics, Meteoritic Material, Mercury and Other Elements in Aerosols at 5 to 19 Kilometers, Science 282, 1664–1669.Google Scholar
  33. Oró, J.: 1960, Synthesis of Adenine from Ammonium Cyanide, Biochem. Biophys. Res. Comm. 2, 407–412.Google Scholar
  34. Peltonen, J. P. K., He, P. and Rosenholm, J. B.: 1993, Influence of UV Irradiation on Unsaturated Fatty Acid Monolayers and Multilayer Films: X-ray Diffraction and Atomic Force Microscopy Study, Langmuir 9, 2363–2369.Google Scholar
  35. Razumovsky, L. and Damodaran, S.: 1999, Surface Activity-Compressibility Relationship of Proteins at the Air-Water Interface, Langmuir 15, 1392–1399.Google Scholar
  36. Schopf, J. W., Kudryavtsev, A. B., Agnesti, D. G., Wdowiak, T. J. and Czaja, A. D.: 2002, Laser-Raman Imagery of Earth's Earliest Fossils, Nature 416, 73–76.Google Scholar
  37. Shah, D. O.: 1970, The Origin of Membranes and Related Surface Phenomena, in C. Ponnamperuma (ed.), Chapter 7, Exobiology, North Holland, pp. 235–265.Google Scholar
  38. Sicre, M.-A., Marty, J.-C. and Saliot, A.: 1990, n-Alkanes, Fatty Acid Esters, and Fatty Acid Salts in Size Fractionated Aerosols Collected over the Mediterranean Sea, J. Geophys. Res. 95, 3649–3657.Google Scholar
  39. Simoneit, B. R. T.: 1995, Evidence for Organic Synthesis in High Temperature Aqueous Media — Facts and Prognosis, Orig. Life Evol. Biosph. 25, 119–140.Google Scholar
  40. Singer, S. J. and Nicholson, G. L.: 1972, The Fluid Mosaic Model of the Structure of Cell Membranes, Science 175, 720–731.Google Scholar
  41. Ställberg-Stenhagen, S. and Stenhagen, E.: 1945, Phase Transitions in Condensed Monolayers of Normal Chain Carboxylic Acids, Nature 156, 239.Google Scholar
  42. Tervahattu, H., Hartonen, K., Kerminen, V.-M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A. F. and Vaida, V.: 2002a, New Evidence of an Organic Layer on Marine Aerosols, J. Geophys. Res. 107, 10.1029/2000JD000282.Google Scholar
  43. Tervahattu, H., Juhanoja, J. and Kupiainen, K.: 2002b, Identification of an Organic Coating on Marine Aerosol Particles by TOF-SIMS, J. Geophys. Res. 107, 10.1029/2001JD001403.Google Scholar
  44. Tuck, A. F.: 2002, The Role of Atmospheric Aerosols in the Origin of Life, Surv. Geophys. 23, 379–409.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. J. Donaldson
    • 1
  • H. Tervahattu
    • 2
  • A. F. Tuck
    • 3
  • V. Vaida
    • 4
  1. 1.Department of ChemistryUniversity of TorontoCanada
  2. 2.Department of Limnology and Environmental ProtectionUniversity of HelsinkiHelsinkiFinland
  3. 3.Meteorological Chemistry ProgramNational Oceanic and Atmospheric Administration, Aeronomy LaboratoryBoulderU.S.A.; (* author for correspondence, e-mail
  4. 4.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderU.S.A

Personalised recommendations