Order

, Volume 20, Issue 2, pp 151–171

# Extendability of Cyclic Orders

• Samuel Fiorini
• Peter C. Fishburn
Article

## Abstract

A cyclic order is a ternary relation that satisfies ternary transitivity and asymmetry conditions. Such a ternary relation is extendable if it is included in a complete cyclic order on the same ground set. Unlike the case of linear extensions of partial orders, a cyclic order need not be extendable. The extension problem for cyclic orders is to determine if a cyclic order is extendable. This problem is known to be NP-complete. We introduce a class of cyclic orders in which the extension problem can be solved in polynomial time. The class provides many explicit examples of nonextendable cyclic orders that were not previously known, including a nonextendable cyclic order on seven points. Let μ be the maximum cardinality of a ground set on which all cyclic orders are extendable. It has been shown that μ≤9. We prove that μ=6. This answers a question of Novák. In addition, we characterize the nonextendable cyclic orders on seven and eight points. Our results are intimately related to irreducible partially ordered set of order dimension three, and to fractional vertices of generalized transitive tournament polytopes. As by-products, we obtain a characterization of cyclically ordered sets of dimension two, and a new proof of a theorem of Dridi on small linear ordering polytopes.

cyclic orders poset dimension polytopes

## References

1. 1.
Alles, P.: Erweiterungen, Diagramme und Dimension zyklischer Ordnungen, Ph.D. Thesis, Technische Hochschule, Darmstadt, Germany, 1986.
2. 2.
Alles, P., Nešetřil, J. and Poljak, S.: Extendability, dimensions, and diagrams of cyclic orders, SIAM J. Discrete Math. 4(4) (1991), 453–471.
3. 3.
Borobia, A.: (0, 12, 1) matrices which are extreme points of the generalized transitive tournament polytope, Linear Algebra Appl. 220 (1995), 97–110.
4. 4.
Borobia, A. and Chumillas, V.: *-graphs of vertices of the generalized transitive tournament polytope, Discrete Math. 179(1#x2013;3) (1998), 49–57.
5. 5.
Brualdi, R. and Hwang, S.-G.: Generalized transitive tournaments and doubly stochastic matrices, Linear Algebra Appl. 172 (1992), 151–168.
6. 6.
Chajda, I. and Novák, V.: On extensions of cyclic orders, Československá Akademie Věd. Časopis pro Pěstování Matematiky 110 (1985), 116–121.
7. 7.
Cruse, A.: On removing a vertex from the assignment polytope, Linear Algebra Appl. 26 (1979), 45–57.
8. 8.
Dridi, T.: Sur les distributions binaires associées à des distributions ordinales, Mathématiques et Sciences Humaines 69 (1980), 15–31.
9. 9.
Dushnik, B. and Miller, E.: Partially ordered sets, Amer. J. Math. 63 (1941), 600–610.
10. 10.
Fiorini, S.: Polyhedral combinatorics of order polytopes, Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 2001.Google Scholar
11. 11.
Fishburn, P.: Decomposing weighted digraphs into sum of chains, Discrete Appl. Math. 16 (1987), 223–238.
12. 12.
Fishburn, P.: Binary probabilities induced by rankings, SIAM J. Discrete Math. 3 (1990), 478–488.
13. 13.
Fishburn, P.: Induced binary probabilities and the linear ordering polytope: A status report, Math. Social Sci. 23 (1992), 67–80.
14. 14.
Fishburn, P. and Woodall, D.: Cycle orders, Order 16 (1999), 149–164.
15. 15.
Galil, Z. and Megiddo, N.: Cyclic ordering is NP-complete, Theoret. Comput. Sci. 5 (1977), 179–182.
16. 16.
Ganter, B.: Two basic algorithms in concept analysis, Technical Report 831, Technische Hochschule Darmstadt, 1984.Google Scholar
17. 17.
Ganter, B. and Reuter, K.: Finding all closed sets: A general approach, Order 8 (1991), 283–290.
18. 18.
Goemans, M. and Hall, L.: The strongest facets of the acyclic subgraph polytope are unknown, Integer Programming and Optimization 1084 (1996), 415–429.
19. 19.
Heyting, A.: Axiomatic Projective Geometry, 2nd edn, Bibliotheca Mathematica, North-Holland, Amsterdam, 1980.
20. 20.
Hiraguchi, T.: On the dimension of orders, Science Rep. Kanazawa Univ. 1 (1955).Google Scholar
21. 21.
Huntington, E.: A set of independent postulates for cyclic order, Proc. Nat. Acad. Sci. U.S.A. 2 (1916), 630–631.
22. 22.
Huntington, E.: Set of completely independent postulates for cyclic order, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 74–78.
23. 23.
Kelly, D.: The 3-irreducible partially ordered sets, Canad. J. Math. 29(2) (1977), 367–383.
24. 24.
Megiddo, N.: Partial and complete cyclic orders, Bull. Amer. Math. Soc. 82 (1976), 274–276.
25. 25.
Megiddo, N.: Mixtures of order matrices and generalized order matrices, Discrete Math. 19 (1977), 177–181.
26. 26.
Mitchell, J. and Borchers, B.: Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm, In: H. F. et al. (eds), High Performance Optimization, 2000, pp. 349–366.Google Scholar
27. 27.
Nalivaiko, V.: Das lineare Ordnungsproblem, Ph.D. Thesis, Falkultät für Mathematik, Universität Magdeburg, Magdeburg, Germany, 1999.Google Scholar
28. 28.
Novák, V.: Cyclically ordered sets, Czechoslovak Math. J. 32 (1982), 460–473.
29. 29.
Novák, V.: On some minimal problem, Arch. Math. (Brno) 10 (1984), 95–100.Google Scholar
30. 30.
Nutov, Z. and Penn, M.: On non-{0, 12, 1} extreme points of the generalized transitive tournament polytope, Linear Algebra Appl. 233 (1996), 149–159.
31. 31.
Pickert, G.: Projektive Ebenen, Springer, Berlin, 1955.
32. 32.
Quillot, A.: Cyclic orders, European J. Combin. 10 (1989), 477–488.
33. 33.
Reinelt, G.: The Linear Ordering Problem: Algorithms and Applications, Res. Exp. Math. 8, Heldermann Verlag, Berlin, 1985.
34. 34.
Spence, E.: Two-graphs, In: C. Colbourn and J. Dinitz (eds), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 686–695.Google Scholar
35. 35.
Trotter, W.: Combinatorics and Partially Ordered Sets, Dimension Theory, The Johns Hopkins University Press, Baltimore, MA, 1992.
36. 36.
Trotter, W. and Moore, J.: Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. 16 (1976), 361–381.