Optical and Quantum Electronics

, Volume 36, Issue 8, pp 709–724

A Traveling-Wave Model of Laser Diodes with Consideration for Thermal Effects

  • W. Li
  • X. Li
  • W.-P. Huang


We investigate the static and dynamic thermal effects using the large-signal traveling-wave model of laser diodes. To cope with the substantial difference in the time constants of the thermal and the optical processes, a simple and efficient iteration method is proposed and demonstrated. Therefore instead of following the time sequence constrained by the finite difference time interval, by the iteration method, we can easily locate the equilibrium point of both the thermal and optical states. Both static and transient states of a laser diode with consideration of the thermal effects are simulated. The various thermal time constants of directly modulated distributed feedback lasers observed recently are explained based on the thermal traveling-wave model.

modeling semiconductor laser simulation thermal effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, G.P. and N.K. Dutta. Semiconductor Lasers, VNR, New York 1993. Chapter 5.Google Scholar
  2. Carroll, J., J. Whiteaway and D. Plumb. Distributed Feedback Semiconductor Lasers, London, U.K: IEE, 1998. Chapter 7.Google Scholar
  3. Carslaw, H.S. and J.C. Jaeger. Conduction of Heats in Solids. Oxford University Press, London, 1959.Google Scholar
  4. Hayashi, T., K. Sato and S. Sekine. Thermal interaction in distributed feedback laser diode array module, J. Lightwave. Tech. 11 (2) 442-448, 1993.CrossRefGoogle Scholar
  5. Ito, M. and T. Kimura. Stationary and transient thermal properties of semiconductor laser diode, {tiIEEE J. Quantum Electron.} 17 (5) 787-795, 1981.Google Scholar
  6. Joyce, W.B. and R.W. Dixon. Thermal resistance of hetero-structure lasers, J. Appl. Phys. 46 (2) 855-866, 1975.CrossRefGoogle Scholar
  7. Kim, B.- S., Y. Chung and J.- S. Lee. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes, IEEE J. Quantum Electron. 36 787-794 2000.CrossRefGoogle Scholar
  8. Kobayashi, S., Y. Yamamoto, M. Ito and T. Kimura. Direct frequency modulation in AlGaAs semiconductor laser, IEEE J. Quantum Electron 18 582-594, 1982.CrossRefGoogle Scholar
  9. Li, X and W.P. Huang, Simulation of DFB semiconductor lasers incorporating thermal effects, {tiIEEE J. Quantum Electron.} 31 (10) 1846-1855, 1995.Google Scholar
  10. Li, X, A.D. Sadovnikov, W.P. Huang and T. Makino, A physics-based three-dimensional model for distributed feedback laser diodes, IEEE J. Quantum Electron. 34, 1545-1553, 1998.CrossRefGoogle Scholar
  11. Li, W., W.-P. Huang and X. Li, Multi-wavelength gain coupled DFB laser cascade: Design modeling and simulation. IEEE J. Quantum Electron 36 (10) 1110-1116, 2000.CrossRefGoogle Scholar
  12. Lowery, A.J. New dynamic semiconductor laser model based on the transmission line modeling method, IEE Proc. J. 134 (2) 281-289, 1987.Google Scholar
  13. Makino, T. and J. Glinski, Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers, IEEE J. Quantum Electron. 24 1507-1518, 1988.CrossRefGoogle Scholar
  14. Makino, T. Transfer matrix theory of the modulation and noise of multi-element semiconductor lasers, IEEE J. Quantum Electron. 29 2762-2770, 1993.CrossRefGoogle Scholar
  15. Ogita, S., A.J. Lowery, and R.S. Tucker. Influence of asymmetric nonlinear gain on the transient intensities of longitudinal modes in long wavelength Fabry-Perot laser diodes, IEEE J. Quantum Electron. 33198-210 1997.CrossRefGoogle Scholar
  16. Papannareddy, R., W. Ferguson and J.K. Butler. A general thermal model for strip geometry injection lasers, J. Appl. Phys. 62 (9) 3566-3569, 1987.CrossRefGoogle Scholar
  17. Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes (Fortran). Cambridge University Press, Cambridge, 1989.Google Scholar
  18. Saavedra, A.A., R. Passy and J.P. von der Weid. Thermal drift in wavelength switching DFB and DBR lasers, Electron. Lett. 33 780-781, 1997.CrossRefGoogle Scholar
  19. Shalom, H., A. Zadok, M. Tur, P.J. Legg, W.D. Cornwell and I. Andonovic, On the various time constants of wavelength changes of a DFB laser under direct modulation, IEEE J. Quantum Electron. 341816-1844, 1998.CrossRefGoogle Scholar
  20. Smith, W.R., J.R. King and B. Tuck. Mathematical modeling of thermal effects in semiconductor laser operation, IEE Proc.-Optoelectron. 144 389-396, 1997.CrossRefGoogle Scholar
  21. Tromborg, B., H. E. Lassen and H. Olesen, Traveling wave analysis of semiconductor lasers modulation responses mode stability and quantum mechanical treatment of noise spectra, IEEE J. Quantum Electron. 30 (4) 939-956, 1994.CrossRefGoogle Scholar
  22. Tsang, C.F., D.D. Marcenac, J.E. Carroll and L.M. Zhang. Comparison between ‘power matrix model (PMM)’ and ‘time domain model (TDM)’ in modeling large signal responses of DFB lasers, IEE Proc. J., 141 (2) 89–96, 1994.CrossRefGoogle Scholar
  23. Zadok, A., H. Shalom, M. Tur, W.D. Conwell and I. Andonovic. Spectral shift and broadening of DFB lasers under direct modulation, IEEE Photon. Technol. Lett. 10 1709-1711, 1998.CrossRefGoogle Scholar
  24. Zhang, L.M. and J.E. Carroll. Large signal dynamic model of the DFB laser, IEEE J. Quantum Electron 28 604-611, 1992.CrossRefGoogle Scholar
  25. Zhang, L.M., S.F. Yu, M. Nowell, D.D. Marcenac and J.E. Carroll, Dynamic analysis of radiation and side mode suppression in second order DFB lasers using time-domain large signal traveling wave model, IEEE J. Quantum Electron. 30 (6) 1389-1395, 1994.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • W. Li
    • 1
  • X. Li
    • 2
  • W.-P. Huang
    • 2
  1. 1.Department of Chemistry and Engineering PhysicsUniversity of Wisconsin-PlattevillePlattevilleUSA
  2. 2.Department of Electrical and Computer EngineeringMcMaster UniversityOntarioCanada

Personalised recommendations