Optical and Quantum Electronics

, Volume 36, Issue 1–3, pp 271–284 | Cite as

Truncation rules for modelling discontinuities with Galerkin method in electromagnetic theory



It is well known that apparently similar discretization schemes of Maxwell's equations in Fourier series may provide very different convergence performances because of truncation. We argue that this work performed in grating theory can be applied to other electromagnetic theories relying on expansions over series different from Fourier series. This generalization is supported by an intuitive argument and by a simple numerical example with Hermite–Gauss functions.

electromagnetic theory Galerkin method grating theory Hermite–Gauss functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. and I.A. Stegun. Handbook of Mathematical Functions, Dover Publications, New York, Chapter 22, 1972.Google Scholar
  2. Bérenger, J.P. J. Comput. Phys. 114 185, 1994.Google Scholar
  3. Booton, R.C. Computational Methods for Electromagnetics and Microwaves, p. 113. John Wiley, New York, 1992.Google Scholar
  4. Chandezon, J., D. Maystre and G. Raoult. J. Opt. (Paris) 11 235, 1980.Google Scholar
  5. Ctyroky, J., S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. de Ridder, R. Stoffer, G. Klaasse, J. Petracek, Ph. Lalanne, J.P. Hugonin and R.M. De La Rue. Opt. Quantum Electron. 34 455, 2002.Google Scholar
  6. Enoch, S., E. Popov and M. Nevière. Proc. SPIE 4438 183, 2001.Google Scholar
  7. Gallawa, R.L., I.C. Goyal, Y. Tu and K. Ghatak. IEEE J. Quantum. Electron. 27 518, 1991.Google Scholar
  8. Gaylord, T.K. and M.G. Moharam. Proc. IEEE 73 894, 1985.Google Scholar
  9. Granet G. and B. Guizal. J. Opt. Soc. Am. A 13 1019, 1996.Google Scholar
  10. Helfert, S.F. and R. Pregla. J. Lightwave Technol. 14 2414, 1996.Google Scholar
  11. Ho, K.M., C.T. Chan and C.M. Soukoulis. Phys. Rev. Lett. 65 3152, 1990.Google Scholar
  12. Hoekstra, H.J.W.M., G.J.M. Krijnen and P.V. Lambeck. J. Lightwave Technol. 10 1352, 1992.Google Scholar
  13. Knop, K. J. Opt. Soc. Am. A 68 1206, 1978.Google Scholar
  14. Lalanne, Ph. Phys. Rev. B 58 9801, 1998.Google Scholar
  15. Lalanne, Ph. IEEE J. Quantum. Electron. 38 800, 2002.Google Scholar
  16. Lalanne, Ph. and J.P. Hugonin. J. Opt. Soc. Am. A 17 1033, 2000.Google Scholar
  17. Lalanne, Ph. and G.M. Morris. J. Opt. Soc. Am. A 13 779, 1996.Google Scholar
  18. Lalanne, Ph. and E. Silberstein. Opt. Lett. 25 1092, 2000.Google Scholar
  19. Li, L. J. Opt. Soc. Am. A 13 1870, 1996.Google Scholar
  20. Li, L. J. Opt. Soc. Am. A 14 2758, 1997.Google Scholar
  21. Li, L. In: Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, eds. G. Bao, L. Cowsar and W. Masters, p. 111. Society for Industrial and Applied Mathematics, Philadelphia, 2001.Google Scholar
  22. Li, L. and J. Chandezon, J. Opt. Soc. Am. A 13 2247, 1996.Google Scholar
  23. Li, L. and C.W. Haggans, J. Opt. Soc. Am. A 10 1184, 1993.Google Scholar
  24. Marcuse, D. IEEE J. Quantum. Electron. 28 459, 1992.Google Scholar
  25. Mogilevtsev, D., T.A. Birks and P.S. Russell. Opt. Lett. 23 1662, 1998.Google Scholar
  26. Monro, T.M., D.J. Richardson, N.G.R. Broderick and P.J. Bennett. IEEE J. Lightwave Technol. 17 1093, 1999.Google Scholar
  27. Nevière, M., P. Vincent, R. Petit and M. Cadilhac. Opt. Commun. 9 48, 1973.Google Scholar
  28. Ortega-Monux, A., J.G. Wanguemert-Perez and I. Molina-Fernandez. J. Opt. Soc. Am. A 20 557, 2003.Google Scholar
  29. Palamaru, M. and Ph. Lalanne. Appl. Phys. Lett. 78 1466, 2001.Google Scholar
  30. Popov, E. and M. Nevière. J. Opt. Soc. Am. A 17 1773, 2000.Google Scholar
  31. Rasmussen, T., J.H. Povslen, A. Bjarklev, O. Lumholt, B. Pedersen and K. Rottwitt. IEEE J. Lightwave Technol. 11 429, 1993.Google Scholar
  32. Sauvan, C., Ph. Lalanne, J.C. Rodier, J.P. Hugonin and A. Talneau. IEEE Photon. Technol. Lett. 15 1243, 2003.Google Scholar
  33. Silberstein, E., Ph. Lalanne, J.P. Hugonin and Q. Cao. J. Opt. Soc. Am. A 18 2865, 2001.Google Scholar
  34. Snyder, A.W. and J.D. Love. Optical Waveguide Theory, Chapman & Hall, London, 1983.Google Scholar
  35. Tervo, J., M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala and M. Leppihalme. Opt. Comm. 198 265, 2001.Google Scholar
  36. Villeneuve, P.R. and M. Piché. J. Mod. Opt. 41 241, 1994.Google Scholar
  37. Welsshar, A., J. Li, R.L. Gallawa, I.C. Goyal, Y. Tu and K. Ghatak. IEEE J. Lightwave Technol. 13 1795, 1995.Google Scholar
  38. Yeh, P. Optical Waves in Layered Media, John Wiley, New York, Chapter 11, 1998.Google Scholar
  39. Zhang, Z. and S. Satpathy. Phys. Rev. Lett. 65 2650, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry de l'Institut d'Optique, Centre National de la Recherche ScientifiqueUniversité Paris Sud Bât. 503Orsay CedexFrance

Personalised recommendations