Optical and Quantum Electronics

, Volume 35, Issue 14, pp 1221–1244

All-optical integrated logic gates based on intensity-dependent transverse modal coupling

  • Eduardo F. Mateo
  • Jesús liñares


We present a study of the spatial propagation of light in a third order planar step-index waveguide with a transverse parabolic width film. By using the Lagrangian formalism, the width and phase evolution of a Gaussian beam has been completely described showing both the refractive contributions of the lens-like waveguiding geometry and self-focusing nonlinearity. As a result of this study, we have proposed the design of a new kind of integrated all-optical devices which, by means of the spatial beam power modulation and its influence on the transverse modal coupling can operate as phase-insensitive AND, OR and XOR logic gates.

all-optical logic devices nonlinear integrated optics variational propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. Phys. Rev. A 27 3135, 1983.Google Scholar
  2. Assanto, G. J. Mod. Opt. 37 855, 1990.Google Scholar
  3. Blair, S., K. Wagner and R. McLeod. Opt. Lett. 19 1946, 1994.Google Scholar
  4. Bischoff, S., A. Buxens, St. Fischer, M. Dü lk and A.T. Clausen. Opt. Quantum Electron. 33 907, 2001.Google Scholar
  5. Boardman, A.D., K. and Xie. J. Opt. Soc. Am. B 14 3102, 1997.Google Scholar
  6. Carlson, B.C. Math. Comp. 51 (Suplement, ibid., S1-S5) 267, 1988.Google Scholar
  7. Carlson, B.C. Math. Comp. 56 267, 1991.Google Scholar
  8. Chiang, K.S. Opt. Quantum Electron. 26 113, 1994.Google Scholar
  9. Garzia, F., C. Sibilia and M. Bertolotti. Opt. Comm. 139 193, 1997.Google Scholar
  10. Gibbs, H.M. Optical Bistability: Controlling light with Light, Academic Press, New York, 1985.Google Scholar
  11. Henari, F.Z. J. Opt. A: Pure Appl. Opt. 3 188, 2001.Google Scholar
  12. Hunsperger, R.G. Integrated Optics: Theory and Technology, Springer-Verlag, Berlin, 1991.Google Scholar
  13. Karim, M.A. and A.S. Awwal. Optical Computing: An Introduction, Wiley, New York, 1992.Google Scholar
  14. Liñares, J., C. Montero and D. Sotelo. Opt. Comm. 180 29, 2000.Google Scholar
  15. Mateo, E., J. Liñares and C. Montero. J. Opt. A: Pure Appl. Opt. 4 562, 2002a.Google Scholar
  16. Mateo, E., C. Montero, V. Moreno and J. Liñares. In: SPIE's Photonics Fabrication Europe 2002, Proceedings of the SPIE: Integrated Optical Devices: Fabrication and Testing, ed. G.C. Righini, Brugge 28 Oct.-1 Nov. Vol. 4944, 2002b.Google Scholar
  17. Milne-Thompson, L.M. Elliptic Integrals. In: Handbook of Mathematical Functions, ed. M. Abramowitz, Dover Publications, New York, 1970.Google Scholar
  18. Prieto, X., C. Montero and J. Liñares. J. Mod. Opt. 42 2159, 1995.Google Scholar
  19. Sammut, R.A., C. Pask and Q.Y. Li. J. Opt. Soc. Am B 10 485, 1993.Google Scholar
  20. Stegeman, G.I., E.M. Wright, N. Finlayson, R. Zanoni and G.T. Seaton. J. Lightwave Technol. 6 953, 1988.Google Scholar
  21. Tamir, T (Ed.) Guided-Wave Optoelectronics, Springer-Verlag, Berlin, 1990.Google Scholar
  22. Witham, G.P. Linear and Nonlinear Waves, Wiley, New York, 1974.Google Scholar
  23. Zhan X., Y. Liu, K. Zhu, X. Liu, G. Xu and P. Ye. Chem. Phys. Lett. 343 493, 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Eduardo F. Mateo
    • 1
  • Jesús liñares
    • 1
  1. 1.Área de Óptica, Dpto. de Física Aplicada, Facultade de Física e E.U. de ÓpticaUniversidade de Santiago de Compostela, E-GaliciaSpain;

Personalised recommendations