Numerical Algorithms

, Volume 37, Issue 1–4, pp 147–158 | Cite as

Affine Arithmetic: Concepts and Applications

  • Luiz Henrique de Figueiredo
  • Jorge Stolfi
Article

Abstract

Affine arithmetic is a model for self-validated numerical computation that keeps track of first-order correlations between computed and input quantities. We explain the main concepts in affine arithmetic and how it handles the dependency problem in standard interval arithmetic. We also describe some of its applications.

interval arithmetic range analysis dependency problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliable Comput. 4(1) (1998) 83–97.Google Scholar
  2. [2]
    A. de Cusatis Jr., L.H. de Figueiredo and M. Gattass, Interval methods for ray casting implicit surfaces with affine arithmetic, in: Proc. of SIBGRAPI'99, 1999, pp. 65–71.Google Scholar
  3. [3]
    L.H. de Figueiredo, Surface intersection using affine arithmetic, in: Proc. of Graphics Interface'96, 1996, pp. 168–175.Google Scholar
  4. [4]
    L.H. de Figueiredo and J. Stolfi, Adaptive enumeration of implicit surfaces with affine arithmetic, Comput. Graphics Forum 15(5) (1996) 287–296.Google Scholar
  5. [5]
    L.H. de Figueiredo, J. Stolfi and L. Velho, Approximating parametric curves with strip trees using affine arithmetic, in: Proc. of SIBGRAPI 2002, 2002, pp. 163–170.Google Scholar
  6. [6]
    E. Hansen, A generalized interval arithmetic, in: Interval Mathematics, ed. K. Nickel, Lecture Notes in Computer Science, Vol. 29 (Springer, New York, 1975) pp. 7–18.Google Scholar
  7. [7]
    W. Heidrich and H.-P. Seidel, Ray-tracing procedural displacement shaders, in: Proc. of Graphics Interface'98, 1998, pp. 8–16.Google Scholar
  8. [8]
    W. Heidrich, P. Slusallek and H.-P. Seidel, Sampling procedural shaders using affine arithmetic, ACM Trans. Graphics 17(3) (1998) 158–176.Google Scholar
  9. [9]
    J. Stolfi and L.H. de Figueiredo, Self-Validated Numerical Methods and Applications, Monograph for 21st Brazilian Mathematics Colloquium (IMPA, Rio de Janeiro, 1997) available at ftp://ftp.tecgraf.pucrio.br/pub/lhf/doc/cbm97.ps.gz.Google Scholar
  10. [10]
    J.A. Tupper, Graphing equations with generalized interval arithmetic, Master's thesis, Graduate Department of Computer Science, University of Toronto, available at http://www.dgp.utoronto.ca/people/mooncake/msc.html.Google Scholar
  11. [11]
    G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152 (Springer, New York, 1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Luiz Henrique de Figueiredo
    • 1
  • Jorge Stolfi
    • 2
  1. 1.IMPA – Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Instituto de Computação, Universidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations