Numerical Algorithms

, Volume 35, Issue 2–4, pp 373–388 | Cite as

A Genetic Algorithm for Solving a Capacitated p-Median Problem

  • Elon Santos Correa
  • Maria Teresinha A. Steiner
  • Alex A. Freitas
  • Celso Carnieri


Facility-location problems have several applications, such as telecommunications, industrial transportation and distribution. One of the most well-known facility-location problems is the p-median problem. This work addresses an application of the capacitated p-median problem to a real-world problem. We propose a genetic algorithm (GA) to solve the capacitated p-median problem. The proposed GA uses not only conventional genetic operators, but also a new heuristic “hypermutation” operator suggested in this work. The proposed GA is compared with a tabu search algorithm.

facility-location p-median problem genetic algorithms tabu search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Back, D.B. Fogel and T. Michalewicz, Evolutionary Computation 1: Basic Algorithms and Operators (Institute of Physics, Bristol, UK, 2000).Google Scholar
  2. [2]
    L.B. Booker, Improving search in genetic algorithms, in: Genetic Algorithms and Simulated Annealing, ed. L. Davis (Morgan Kauffmann, Los Altos, CA, 1987) pp. 61–73.Google Scholar
  3. [3]
    E.S. Correa, Algoritmos geneticos e busca tabu aplicados ao problema das p-medianas, Master dissertation, Programa de Pós-Graduação em Metodos Numericos em Engenharia, Universidade Federal do Parana, Brazil (2001).Google Scholar
  4. [4]
    C. Dibble and P.J. Densham, Generating interesting alternatives in GIS and SDSS using genetic algorithms, GIS/LIS Symposium, University of Nebraska, Lincoln, 1993.Google Scholar
  5. [5]
    E. Erkut, B. Bozkaya and J. Zhang, An effective genetic algorithm for the p-median problem, Preprint (2001).Google Scholar
  6. [6]
    A. Fairley, Comparison of choosing the crossover point in the genetic crossover operation, Preprint, Department of Computer Science, University of Liverpool (1991).Google Scholar
  7. [7]
    F. Glover, Scatter search and path relinking, Preprint, Graduate School of Business, University of Colorado, Boulder (1999).Google Scholar
  8. [8]
    F. Glover, Tabu search for the p-median problem, Preprint, University of Colorado, Boulder (1999).Google Scholar
  9. [9]
    F. Glover and M. Laguna, Tabu Search (Kluwer Academic, University of Colorado, 1997).Google Scholar
  10. [10]
    D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning (Addison-Wesley, Menlo Park, CA, 1989).Google Scholar
  11. [11]
    M.F. Goodchild and V. Noronha, Location-Allocation for Small Computers, Monograph No. 8 (University of Iowa, 1983).Google Scholar
  12. [12]
    C.M. Hosage and M.F. Goodchild, Discrete space location-allocation solutions from genetic algorithms, Ann. Oper. Res. 6 (1986) 35–46.Google Scholar
  13. [13]
    O. Kariv and S.L. Hakimi, The p-median problems, in: An Algorithmic Approach to Network Location Problems, SIAM J. Appl. Math. 37 (1979) 539–560.Google Scholar
  14. [14]
    S.F. Mayerle, Um algoritmo genetico para o problema do caixeiro viajante, Preprint, Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil (1996).Google Scholar
  15. [15]
    J.A. Moreno-Perez, J.M. Moreno-Vega and N. Mladenovic, Tabu search and simulated annealing in p-median problems, Talk at: The Canadian Operational Research Society Conf., Montreal, 1994.Google Scholar
  16. [16]
    C. Revelle and R. Swain, Central facilities location, Geographical Analysis 2 (1970) 30–42.Google Scholar
  17. [17]
    M.B. Teitz and P. Bart, Heuristic concentration: Two-stage solution construction, Oper. Res. Soc. 16 (1968) 955–961.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Elon Santos Correa
    • 1
  • Maria Teresinha A. Steiner
    • 2
  • Alex A. Freitas
    • 3
  • Celso Carnieri
    • 2
  1. 1.Computer Science DepartmentThe University of ManchesterManchesterUK
  2. 2.Departamento de MatematicaUniversidade Federal do Parana, Centro PolitecnicoCuritiba-PRBrazil
  3. 3.Departamento de InformaticaPontificia Universidade, Catolica do Parana, Imaculada ConceicaoCuritiba-PRBrazil

Personalised recommendations