Numerical Algorithms

, Volume 35, Issue 1, pp 81–90 | Cite as

Continued Fractions for Rogers–Szegö Polynomials

  • Qing-Hu Hou
  • Alain Lascoux
  • Yan-Ping Mu
Article

Abstract

We evaluate different Hankel determinants of Rogers–Szegö polynomials, and deduce from it continued fraction expansions for the generating function of RS polynomials. We also give an explicit expression of the orthogonal polynomials associated to moments equal to RS polynomials, and a decomposition of the Hankel form with RS polynomials as coefficients.

q-binomial coefficients Rogers–Szegö polynomials continued fractions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).Google Scholar
  2. [2]
    R. Askey and M.E.H. Ismail, A generalization of ultraspherical polynomials, in: Studies in Pure Mathematics, ed. P. Erdös (Birkhäuser, Boston, MA, 1983) pp. 55–78.Google Scholar
  3. [3]
    B. Baillaud and H. Bourget, Correspondance d'Hermite et de Stieltjes (Gauthier-Villars, Paris, 1905).Google Scholar
  4. [4]
    A. Berkovich and O. Warnaar, Positivity preserving transformations for q-binomial coefficients, math.CO/0302320 (2003).Google Scholar
  5. [5]
    C. Brezinski, History of Continued Fractions and Padé Approximants (Springer, Berlin, 1991).Google Scholar
  6. [6]
    K.A. Driver and D. Lubinsky, Convergence of Padé approximants for a q-hypergeometric series, Aequationes Math. 42 (1991) 85–106.Google Scholar
  7. [7]
    N.J. Fine, Basic Hypergeometric Series and Application, Mathematical Surveys and Monographs, Vol. 27 (Amer. Math. Soc., Providence, RI, 1988).Google Scholar
  8. [8]
    J. Goldman and G.-C. Rota, The number of subspaces of a vector space, in: Recent Progress in Combinatorics, ed. W.T. Tutte (Academic Press, New York, 1969) pp. 75–83.Google Scholar
  9. [9]
    K. Hikami and B. Basu-Mallick, Supersymmetric Polychronakos spin chain: Motifs, distribution functions and characters, Nuclear Phys. B 566 (2000) 511–528.Google Scholar
  10. [10]
    M. Ismail and D. Stanton, More orthogonal polynomials as moments, in: Mathematical Essays in Honor of Gian-Carlo-Rota (Birkhäuser, Bäsel, 1998) pp. 377–396.Google Scholar
  11. [11]
    V. Kac and P. Cheung, Quantum Calculus (Springer, New York, 2002) pp. 25–26.Google Scholar
  12. [12]
    A. Lascoux, Symmetric functions and combinatorial operators on polynomials, in: CBMS-AMS Conference Lecture Notes (to appear).Google Scholar
  13. [13]
    D. Lubinsky and E.B. Saff, Convergence of Padé approximants of partial theta functions and the Rogers-Szego polynomials, Construct. Approx. 3 (1987) 331–361.Google Scholar
  14. [14]
    I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979).Google Scholar
  15. [15]
    A. Nijenhuis, A.E. Solow and H.S. Wilf, Bijective methods in the theory of finite vector spaces, J. Combin. Theory A 37 (1984) 80–84.Google Scholar
  16. [16]
    G. Szegö, Ein Beitrag zur Theorie der Thetafunktionen, Sitz. Preuss. Akad.Wiss., Phys.-Math. Klasse 19 (1926) 249–252 (reprinted in: Collected Papers, Vol. 1, ed. R. Askey (Birkhaüser, Boston, MA) pp. 795–805).Google Scholar
  17. [17]
    T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sc. Toulouse 8 (1894) 1–122.Google Scholar
  18. [18]
    H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1973).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Qing-Hu Hou
    • 1
  • Alain Lascoux
    • 1
    • 2
  • Yan-Ping Mu
    • 1
  1. 1.Center for Combinatorics, LPMCNankai UniversityTianjinP. R. China
  2. 2.CNRS, Institut Gaspard MongeUniversité de Marne-la-ValléeMarne-la-Vallée CedexFrance

Personalised recommendations