Numerical Algorithms

, Volume 34, Issue 2–4, pp 379–391 | Cite as

Convergence Acceleration of Gauss–Chebyshev Quadrature Formulae

  • M. Kzaz
  • M. Prévost

Abstract

The aim of this paper is to accelerate, via extrapolation methods, the convergence of the sequences generated by the Gauss–Chebyshev quadrature formula applied to functions holomorphic in ]−1,1[ and possessing, in the neighborhood of 1 or −1, an asymptotic expansion with log (1±x)(1±x)α, (1±x)α, α>−1, as elementary elements.

Gauss–Chebyshev quadrature convergence acceleration asymptotic expansion orthogonal polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).Google Scholar
  2. [2]
    P.J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1984).Google Scholar
  3. [3]
    J. Dieudonné, Calcul Infinitésimal (Herman, Paris, 1968).Google Scholar
  4. [4]
    J.D. Donaldson and D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9 (1972) 573–602.Google Scholar
  5. [5]
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1992).Google Scholar
  6. [6]
    M. Kzaz, Gaussian quadrature and acceleration of convergence, Numer. Algorithms 15 (1997) 75–89.Google Scholar
  7. [7]
    P. Verlinden, Acceleration of Gauss–Legendre quadrature for an integrand with an endpoint singularity, J. Comput. Appl. Math. 77 (1997) 277–287.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Kzaz
    • 1
  • M. Prévost
    • 2
  1. 1.Department of Mathematics and InformaticsFaculty of Sciences and TechniqueMarrakeshMorocco
  2. 2.Laboratoire de Mathématiques Pures et AppliquéesUniversité du Littoral Côte d'Opale, Centre Universitaire de la Mi-VoixCalais CédexFrance

Personalised recommendations