Advertisement

Nonlinear Dynamics

, Volume 35, Issue 4, pp 313–329 | Cite as

Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation

  • D. García-Vallejo
  • J. Mayo
  • J. L. Escalona
  • J. Domínguez
Article

Abstract

This paper develops a new procedure for evaluating the elastic forces, the elastic energy and the jacobian of the elastic forces in the absolute nodal coordinate formulation. For this procedure, it is fundamental to use some invariant sparse matrices that are integrated in advance and have the property of transforming the evaluation of the elastic forces in a matrix multiplication process. The use of the invariant matrices avoids the integration over the volume of the element for every evaluation of the elastic forces. Great advantages can be achieved from these invariant matrices when evaluating the elastic energy and calculating the jacobian of the elastic forces as well. The exact expression of the jacobian of the differential system of equations of motion is obtained, and some advantages of using the absolute nodal coordinate formulation are pointed out. Numerical results show that there is important time saving as a result of the use of the invariant matrices.

absolute nodal coordinates invariant matrices multibody systems nonlinear elastic forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Escalona, J. L., Hussein, A. H., and Shabana, A. A., ‘Application of the absolute nodal coordinate formulation to multibody system dynamics’, Journal of Sound and Vibration 214, 1998, 833–851.CrossRefGoogle Scholar
  2. 2.
    Omar, M. A. and Shabana, A. A., ‘A two-dimensional shear deformation beam for large rotation and deformation’, Journal of Sound and Vibration 243(3), 2001, 565–576.CrossRefGoogle Scholar
  3. 3.
    Shabana, A. A. and Yakoub, R. Y., ‘Three dimensional absolute nodal coordinate formulation for beam elements: Theory’, ASME Journal of Mechanical Design 123, 2001, 606–613.Google Scholar
  4. 4.
    Yakoub, R. Y. and Shabana, A. A., ‘Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and application’, ASME Journal of Mechanical Design 123, 2001, 614–621.Google Scholar
  5. 5.
    Mikkola, A. M. and Shabana, A. A., ‘A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications’, Multibody System Dynamics 9, 2003, 283–309.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Shabana, A. A. and Mikkola, A. M., ‘Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity’, ASME Journal of Mechanical Design 125, 2003, 342–350.Google Scholar
  7. 7.
    Brenan, K. E., Campbell, S. L., and Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, Pennsylvania, 1996.Google Scholar
  8. 8.
    Ascher, U. M. and Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, Pennsylvania, 1998.Google Scholar
  9. 9.
    Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1993.Google Scholar
  10. 10.
    Gurtin, M. E., An Introduction to Continuum Mechanics, Academic Press, San Diego, California, 1981.Google Scholar
  11. 11.
    Zienkiewich, O. C. and Taylor, R. L., The Finite Element Method, Vol. 1, McGraw-Hill, London, 1994.Google Scholar
  12. 12.
    Sugiyama, H., Escalona, J. L., and Shabana, A. A., ‘Formulation of three-dimensional joint constraint using the absolute nodal coordinates’, Nonlinear Dynamics 31, 2003, 167–195.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sopanen, J. T. and Mikkola, A. M., ‘Studies on the stiffness properties of the absolute nodal coordinate formulation for three-dimensional beams’, in Proceedings of the ASME 2003 Design Engineering Technical Conferences, Chicago, Illinois, September 2–6, 2003.Google Scholar
  14. 14.
    García de Jalón, J. and Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems—The Real-Time Challenge, Springer-Verlag, New York, 1993.Google Scholar
  15. 15.
    Cuadrado, J., Cardenal, J., and Bayo, E., ‘Modelling and solution methods for efficient real-time simulation of multibody dynamics’, Multibody System Dynamics 3(1), 1997, 259–280.MathSciNetGoogle Scholar
  16. 16.
    Wu, S. C. and Haug, E. J., ‘Geometric non-linear substructuring for dynamics of flexible mechanical systems’, International Journal of Numerical Methods in Engineering 26, 1988, 2211–2226.CrossRefGoogle Scholar
  17. 17.
    Berzeri, M. and Shabana, A. A., ‘Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation’, Multibody System Dynamics 7, 2002, 357–387.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. García-Vallejo
    • 1
  • J. Mayo
    • 1
  • J. L. Escalona
    • 1
  • J. Domínguez
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of SevilleSevilleSpain

Personalised recommendations