Natural Hazards

, Volume 33, Issue 2, pp 161–189 | Cite as

Risk from Lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador)

  • E. Aguilera
  • M. T. Pareschi
  • M. Rosi
  • G. Zanchetta
Article

Abstract

Cotopaxi volcano (Ecuador) is famous for production of large-scale laharsthrough melting of ice and snow on its summit glacier. The lahar hazard inthe northern valleys of the volcano is assessed through numerical simulationof a maximum expected event. Considerations of past activity suggest that anevent like that of the 1877 eruption is the maximum expected lahar event.Review of the historical records reveals that northerly flowing lahars initiallyfollowed the Rio Pita and Rio Salto; at ``La Caldera'', owing to a sharp bendin the channel, the lahar partly overflowed into Rio Santa Clara. The laharsalong Rio Pita and Rio Santa Clara were conveyed to the Los Chillos valley.The simulation, using an initial flow volume of 60 × 106 m3reproduces the maximum heights reached by the 1877 lahar along the northernvalley. The volume of lahar triggered by an eruption similar to that of 1877 isestimated to have a volume about 2/3 of that of 1877. This hypothesized reductionof volume is attributed to shrinkage of the summit glacier over the past century.However, dramatic population growth along valleys exposed to lahar hazard overthe past 100 years makes the present risk from lahars higher than in the past. Thesharp bend of ``La Caldera'' represents a crucial site controlling lahar propagation:should a lahar overflow into the Santa Clara valley the risk increases considerablydue to the much higher concentration of human settlements along the valley. Resultsof a lahar simulation in which the entire flow is artificially forced into Rio Pita suggestthat construction of a dyke at ``La Caldera'' to prevent overflow would substantiallyreduce the general risk in the area.

Cotopaxi volcano Ecuador Lahar simulation risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, E.: 1995, Flujos de lodo del volcan Cotopaxi, Revista Geografica n. 34, Instituto Geografico Militar, Quito.Google Scholar
  2. Barberi, F., Caruso, P., Macedonio, G., Pareschi, M. T., and Rosi, M.: 1992, Reconstruction and numerical simulation of the lahar of the 1877 eruption of Ecuador, Acta Vulcanologica 2, 35–44.Google Scholar
  3. Barberi, F., Coltelli, M., Frullani, A., Rosi, M., and Almeida, E.: 1995, Chronology and dispersal characteristic of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting, J. Volcanol. Geother. Res. 69, 217–239.Google Scholar
  4. Blong, R. J.: 1984, Volcanic Hazard. A Source Book on the Effect of Eruptions, Academic Press, Orlando, Florida.Google Scholar
  5. Caruso, P. and Pareschi, M. T.: 1993, Estimation of lahar and lahar-runout flow hydrograph on natural beds, Envir. Geol. 22, 141–152.Google Scholar
  6. Chen, C.: 1987, Comprehensive review of debris flow modeling concepts in Japan, Rev. Eng. Geol., Geol. Soc. Am. Rev. Eng. Geol. 7, 13–29.Google Scholar
  7. Costa, J. E.: 1997, Hydraulic modeling for Lahar hazards at Cascades Volcanoes, Envir. Eng. Geosc. 3(1), 21–30.Google Scholar
  8. Finnie, I.: 1972, Some observation on the erosion of ductile metals, Wear 19, 81–90.Google Scholar
  9. Iverson, R. M.: 1997, The physics of debris flow, Rev. Geoph. 35, 245–296.Google Scholar
  10. Iverson, R. M., LaHusen, R. G., Major, J. J., and Zimmerman, C. L.: 1994, Debris flows against obstacle and bends: dynamic and deposits, EOS Trans. Am. Geoph. Un. 75(44), 274.Google Scholar
  11. Iverson, R. M., Schilling, S. P., and Vallance, J. W.: 1998, Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull. 110(8), 972–984.Google Scholar
  12. Jordan, E.: 1983, Die Vergletscherung des Cotopaxi Ecuador, Zeitsch Gletsh Glazial, 73–102.Google Scholar
  13. Laenen, A. and Hansen, R. P.: 1988, Simulation of three lahars in the Mount St. Helens area, Washington, using a one dimensional, unsteady-state streamflow model, U.S. Geol Sur, Water-Resource Investigations Report 88–4004.Google Scholar
  14. Lowe, D., Williams, S. N., Leigh, H., Connor, C. B., Gemmel, J. B., and Stoiber, R. E.: 1986, Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, Nature 324, 51–53.Google Scholar
  15. McArthur, R. C., Hamilton, D. L., and Mason, R. C.: 1990, Numerical simulation of mudflows from the hypothetical failure of a debris blockage lake below Mt. St. Helens, WA. In: R. H. French (ed.), Hydraulics/Hydrology of Arid Land (H2AL), ASCE, New York, pp. 416–421.Google Scholar
  16. Macedonio, G. and Pareschi, M. T.: 1992, Numerical simulation of some lahars fromMt. St. Helens', J. Volcanol. Geother. Res. 54, 65–80.Google Scholar
  17. Major, J. J. and Pierson, T. C.: 1990, Rheological analysis of fine-grained natural debris-flow material. In: R. H. French (ed.). Hydraulics/Hydrology of Arid Land (H2AL), ASCE, New York, pp. 225–231.Google Scholar
  18. Major, J. J. and Pierson, T. C. 1992, Debris flow rheology: experimental analyses of fine-grained slurries, Wat. Res. Res. 28(3), 841–857.Google Scholar
  19. Montgomery, D. R., Panfil, M. S., and Hayes, S. K.: 1999, Channel-bed mobility response to extreme sediment loading at Mount Pinatubo, Geology 27(3), 271–274.Google Scholar
  20. Naranjo, J. L., Sigurdsson, H., Carey, S. N., and Fritz, W.: 1986, Eruption of the Nevado del Ruiz Volcano, Colombia, On 13 November 1985: Thepra Fall and Lahars, Science 233, 961–963.Google Scholar
  21. O'Brien, J. S. and Julien, P. Y.: 1988, Laboratory analyses of mudflow properties, ASCE J. Hydr. Eng. 114, 877–887.Google Scholar
  22. O'Brien, J. S., Julien, P. Y., and Fullerton, W. T.: 1993, Mudflow simulation, ASCE J. Hydr. Eng. 119(2), 244–261.Google Scholar
  23. Phillips, C. J. and Davies, T. R. H.: 1991, Determining rheological parameters of debris flow material, Geomorphology 4, 101-100.Google Scholar
  24. Pierson, T. C.: 1985, Initiation and flow behaviour of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington, Geol. Soc. Am. Bull. 96, 1056–1069.Google Scholar
  25. Pierson, T. C.: 1995, Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models, J. Volcanol. Geother. Res. 66, 283–294.Google Scholar
  26. Pierson, T. C.: 1998, An empirical method for estimating travel times for wet volcanic mass flows, Bull. Volcanol. 60, 98–109.Google Scholar
  27. Pierson, T. C., Janda, R. J., Thouret, J. C., and Borrero, C. A. 1990, Perturbation and melting of snow and ice by 13 November 1985 eruption of Nevado del Ruiz, Colombia and consequent mobilization, flow and depositions of lahars, J. Volcanol. Geother. Res. 41, 17–66.Google Scholar
  28. Rodolfo, K. S. and Arguden, A. T.: 1991, Rain-lahar generation and sediment-delivery systems at Mayon volcano, Philippines. In: R. V. Fisher and G. A. Smith (eds), Sedimentation in Volcanic Setting, SEMP Special publication n. 45, pp. 71–87.Google Scholar
  29. Scott, K. M.: 1988, Origin behavior, and sedimentologicy of lahars and lahar-runout flows in the Toutle-Cowlitz River System. U.S. Geol. Surv. Prof Pap. 1447–A.Google Scholar
  30. Scott, K. M., Vallance, J.W., and Pringle, P. T.: 1995:, Sedimentology, behavior, and hazard of debris flows at Mount Rainer, Washington. U.S. Geol. Surv. Prof. Pap. 1547.Google Scholar
  31. Sodiro, L.: 1877, Relacion sobre la erucion del Cotopaxi acaecida el dia 26 de junio de 1877, Imprenta Nacional, Quito, Ecuador.Google Scholar
  32. Takahashi, T.: 1991, Debris flow. Balkema AA, Rotterdam, IAHR Monograph Series.Google Scholar
  33. Thorpe, R. S., Francis, P. W., Hammil, M., and Backer, M. C. W. 1982, The Andes. In: R. S. Thorpe (ed.), Andesites, Chichester, John Wiley, pp. 187–205.Google Scholar
  34. Tilling, R. I.: 1989, Introduction and overview. In: T. I. Tilling (ed.), Volcanic Hazard, American Geophysical Union Short Course in Geology, vol. 1, pp. 1–8.Google Scholar
  35. Vallance, J. W. and Scott, K. M.: 1997, The Osceola mudflow from Mount Rainer: Sedimentology and hazard implications of a huge clay-rich debris flow, Geol. Soc. Am. Bull. 109, 143–163.Google Scholar
  36. Vignaux, M. and Weir, G. J.: 1990, A general model for Mt. Ruapehu lahars, Bull. Volcanol. 52, 381–390.Google Scholar
  37. Whymper, E.: 1880: Viajaes a traves de los Majestuoso Andes del Ecuador, Colleciòn Tierra Incognita 4, Ed. Abya-Yala, pp. 157–165.Google Scholar
  38. Wolf, T.: 1878, Memoria sobre el Cotopaxi y su ultima eruption acaecida el 26 de junio de 1877, Imprenta del Comercio, Guayaquil, Ecuador, 64 pp.Google Scholar
  39. Wolf, T.: 1904, Crònica de los fenòmenos volcànicos y terremotos en el Ecuador. Imprenta de la Universidad Central, Quito, Ecuador, 120 pp.Google Scholar
  40. Yokoyama, I., Tilling, R. I., and Scarpa, R. 1984: International mobile early-warning system(s) for volcanic eruptions and related seismic activities. Paris: UNESCO FP/2106-82-01 (2286) 102 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • E. Aguilera
    • 1
  • M. T. Pareschi
    • 1
    • 2
  • M. Rosi
    • 3
  • G. Zanchetta
    • 3
  1. 1.ESPECampus Politecnico Santa Clara, SangolquìEcuador
  2. 2.CNR-Istituto Geoscienze e GeorisorsePisaItaly
  3. 3.Dipartimento di Scienze della TerraUniversity of PisaPisaItaly

Personalised recommendations