Natural Hazards

, Volume 33, Issue 1, pp 47–76

Towards Operational Repeat-Pass SAR Interferometry at Active Volcanoes

Article

Abstract

Measurement of volcanic surface movement is an operational technique at many volcano observatories to help understand internal processes and to aid in eruption forecasting. The potential of differential radar interferometry (DInSAR) to map patterns of surface deformation on volcanoes is well-proven. However, the technique has not yet become operational, partly because current spaceborne radars were not designed for the task. We discuss the limitations of the European Space Agency's ERS SARs for this purpose in terms of: radar system constraints, volcano surface characteristics, interpretational uncertainties and the operational context. We illustrate the drawbacks at typical stratovolcanoes in South America, chosen to represent a range of conditions. For non expert users of DInSAR, knowing how well DInSAR will work on a particular volcano is important. Freely-available global datasets of vegetation cover and atmospheric water vapour content can be used as proxy measures of coherence and path delay effects, which are the two main determinants of data quality. Operational volcano DInSAR is still years away, but many of the characteristics of such a system can be specified based on the experience learned from earlier radars.

active volcano deformation monitor differential synthetic aperture radar (DInSAR) ERS satellites limitations future systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACRES Speedy Transmission After Reception (STAR) Service.: 2003,http://www.auslig.gov.au/acres/prod_ser/star.htm.Google Scholar
  2. Amelung, F., Jonsson, S, Zebker, H., and Segall, P.: 2000, Widespread uplift and ‘trapdoor’ faulting on Galapagos volcanoes observed with radar interferometry, Nature 407, 993–996.Google Scholar
  3. Bamler, R., and Hartl, P.: 1998, Synthetic aperture radar interferometry, Inv. Prob. 14, R1–R54.CrossRefGoogle Scholar
  4. Barberi, F., Coltelli, M., Frullani, A., Rosi, M., and Almeida, E.: 1995, Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi, Ecuador: Implications for long-term eruptive forecasting, J. Volc. Geotherm. Res. 69, 217–239.Google Scholar
  5. Bonaccorso, A., Aloisi, M., and Mattia, M.: 2002, Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data, Geophys. Res. Lett. 29, 10.1029/2001GL014397.Google Scholar
  6. Coltelli, M., Fornaro, G., Franceschetti, G., Lanari, R., Migliaccio, M., Moreira, J. R., Papathanassiou, K. P., Puglisi, G., Riccio, D., and Schwabisch, M.: 1996, SIR-C/X SAR multifrequency multipass interferometry: A new tool for geological interpretation, J. Geophys. Res. 101, 23127–23148.CrossRefGoogle Scholar
  7. Crosetto, M.: 2002, Calibration and validation of SAR interferometry for DEM generation, ISPRS J. Photogram. Remote Sens. 57, 213–227.Google Scholar
  8. de Silva, S. L. and Francis, P. W.: 1991, Volcanoes of the Central Andes, Springer-Verlag, Berlin, 216 pp.Google Scholar
  9. Deutsches Zentrum für Luft-und Raumfahrt.: 1999, X-SAR SRTM: Shuttle Radar Topography Mission, Mapping the Earth from Space, In: Press and Public Relations, Cologne, 24 pp.Google Scholar
  10. Dvorak, J. J. and Dzurisin, D.: 1997, Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents, Rev. Geophys. 35, 343–384.CrossRefGoogle Scholar
  11. Dzurisin, D.: 2000, Volcano geodesy; challenges and opportunities for the 21st century, In: P. W. Francis, J. Neuberg, R. S. J. Sparks, (eds.), The causes and consequences of eruptions of andesite volcanoes; papers of a discussion meeting, Philosophical Transactions — Royal Society. Mathematical, Physical and Engineering Sciences 358 (1770), 1547–1566.Google Scholar
  12. Froger, J.-L., Merle, O., and Briole, P.: 2001, Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett. 187, 245–258.CrossRefGoogle Scholar
  13. Hall, M. L., Robin, C., Beate, B., Mothes, P., and Monzier, M.: 1999, Tungurahua Volcano, Ecuador; structure, eruptive history and hazards, J. Volc. Geotherm. Res. 91, 1–21.CrossRefGoogle Scholar
  14. Hernandez, R., Aguilar, J., Carrasco, D., and Romero, R.: 2002, Volcanic monitoring using differential interferometry in the Tungurahua volcano and Galapagos islands, In: Proc. GIS-Ecuador Conference, Quito, Ecuador, 10–19 July 2002.Google Scholar
  15. Jonsson, S., Zebker, H., Cervelli, P., Segall, P., Garbeil, H., Mouginis-Mark, P., and Rowland, S.: 1999, A shallow-dipping dike fed the 1995 flank eruption at Fernandina Volcano, Galapagos, observed by satellite radar interferometry, Geophys. Res. Lett. 26, 1077–1080.Google Scholar
  16. Jordan, E., and Hastenrath, S.: 1998, Glaciers of Ecuador (I-3), In: R. S. Williams Jr. and J. G. Ferrigno (eds.), Satellite Image Atlas of Glaciers of the World: U.S. Geological Survey Professional Paper 1386-I (Glaciers of South America), 206 pp.Google Scholar
  17. Lee, H. and Liu, J. G.: 2001, Analysis of topographic decrorrelation in SAR interferometry using ratio coherence images, Trans. Geosci. Rem. Sens. IEEE 39, 223–232.Google Scholar
  18. Lu, Z., Mann, D., Freymuller, J. T., and Meyer, D. J.: 2000, Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations, J. Geophys. Res. 105, 10791–10806.Google Scholar
  19. Lundgren, P. and Rosen, P. A.: 2003, Source model for the 2001 flank eruption of Mt. Etna volcano, Geophys. Res. Lett. 30, 10.1029/2002GL016774.Google Scholar
  20. Lundgren, P., Usai, S., Sansosti, E., Lanari, R., Tesauro, M., Fornari, G., and Berardino, P.: 2001, Modeling surface deformation observed with SAR interferometry at Campi Flegrei caldera, J. Geophys. Res. 106, 19355–19366.Google Scholar
  21. Lundgren, P., Berardino, P., and Coltelli, M., Fornaro, G., Lanari, R., Puglisi, G., Sansosti, E., and Tesauro, M.: 2003, Coupled magma chamber inflation and sector collapse slip observed with synthetic aperture radar interferometry on Mt. Etna volcano, J. Geophys. Res. 108, 10.1029/2001JB000657.Google Scholar
  22. Massonnet, D. and Feigl, K. L.: 1998, Radar interferometry and its application to changes in the Earth's surface, Reviews of Geophysics 36, 441–500.CrossRefGoogle Scholar
  23. Minster, B.: 2000, Synthetic aperture radar interferometry, In: Navy Intelligence Integration Symposium, ftp://rai.ucsd.edu/pub/OUT/Web/Navy_LS.pdfGoogle Scholar
  24. Monzier, M., Robin, C., Samaniego, P., Hall, M. L., Cotten, J., and Mothes, P.: 1999, Sangay Volcano, Ecuador; structural development, present activity and petrology, J. Volcanol. Geotherm. Res. 90, 49–79.CrossRefGoogle Scholar
  25. Myneni, R.: 2002, MODIS MOD15_BU vegetation products, http://cybele.bu.edu.Google Scholar
  26. Myneni et al.: 2002, Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ. 83, 214–231.CrossRefGoogle Scholar
  27. NASA Jet Propulsion Laboratory: 2003, South America Shines in NASA's Latest Space Radar Map Release, press release 2003-087, http://www.jpl.nasa.gov/releases/2003/87.cfm N.V.A.P.: 1997, NASA Water Vapor Project, 1988–1994, http://harp.gsfc.nasa.gov/imswelcome.Google Scholar
  28. Perkins, C. R. and Parry, R. B.: 2000, World Mapping Today, 2nd edn, Bowker-Saur.Google Scholar
  29. Pritchard, M. E. and Simons, M.: 2002, A satellite geodetic survey of large-scale deformation of volcanic centres in the Central Andes, Nature 418, 167–171.CrossRefGoogle Scholar
  30. Randel, D. L., Vonder Haar, T. H., Ringerund, M. A., Stephens, G. L, Greenwald, T. J., and Combs, C. L.: 1996, A new global water vapor dataset, Bull. Amer. Meteorol. Soc. 77, 1233–1246.Google Scholar
  31. Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H., and Fielding, E. J.: 1996, Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry, J. Geophys. Res. 101, 23109–23125.CrossRefGoogle Scholar
  32. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., and Goldstein, R. M.: 2000, Synthetic aperture radar interferometry, In: Proc. IEEE Vol. 88, No. 3, pp. 333–382.CrossRefGoogle Scholar
  33. Rossel, F., Mejia, R., Ontaneda, G., Pombosa, R., Roura, J., Le Goulven, P., Cadier, E., Calvez, R., and Orstom, B. P.: 1997, Régionalisation de l'influence du Niño sur les precipitations de l'Equateur, In: E. Cadier, G. Gómez, R. Galarraga, C. Fernández-Jáuregui (eds.), Proceedings of Consecuencias climaticas e hidrologicas del evento El Niño a escala regionale y local, incidencia en America del Sur, Quito, Ecuador, November 26–29, 1997.Google Scholar
  34. Rothery, D. A., 2002, Real-time volcano monitoring from space — principles, tools and issues, Adv. in Environmental. Monitoring and Modelling 1, 1–4.Google Scholar
  35. Ruiz, M., Guillier, B., Chatelain, J.-L., Yepes, H., Hall, M., and Ramon, P.: 1998, Possible causes for the seismic activity observed in Cotopaxi volcano, Ecuador, Geophys. Res. Lett. 25, 2305–2308.CrossRefGoogle Scholar
  36. Scharroo, R. and Visser, P.: 1998, Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res. 103, 8113–8127.CrossRefGoogle Scholar
  37. Shearer, J. W.: 1990, The accuracy of digital terrain models, In: G. Petrie and T. J. M. Kennie (eds.), Modelling in Surveying and Civil Engineering Terrain, WPS, London, pp. 315–336.Google Scholar
  38. Simkin, T. and Siebert, L.: 1994, Volcanoes of the World, Geoscience Press, Washington, 349 pp.Google Scholar
  39. Smithsonian Institution: 2003, Global Volcanism Program, Volcanoes of the World, http://www.volcano.si.edu/gvpGoogle Scholar
  40. Stevens, N. F.: 1999, Lava flow volume and morphology from ERS synthetic aperture radar interferometry, Ph.D. thesis, University of Reading, pp. 91–95.Google Scholar
  41. Stevens, N. F., Wadge, G., Williams, C. A., Muller, J.-P., and Morley, J.: 2001a, Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry, J. Geophys. Res. 106, 11293–11315.Google Scholar
  42. Stevens, N. F., Wadge, G., and Williams, C. A.: 2001b, Post-emplacement lava subsidence and the accuracy of ERS IfSAR digital elevation models of volcanoes, Int. J. Remote Sens. 22, 819–828.Google Scholar
  43. Terunuma, T., Nishida, K., Amada, K., Sato, I., and Urai, M.: 2003, Tracing pyroclastic flows and lahars with satellite synthetic aperture radar, Int. J. Rem. Sens. (sub judice).Google Scholar
  44. Thouret, J.-C., Finizola, A., Fornari, M., Legeley-Padovani, A., Suni, J., and Freche, M.: 2001, Geology of El Misti volcano near the city of Arequipa, Peru, Geol. Soc. Am. Bull. 113, 1593–1610.CrossRefGoogle Scholar
  45. Van Zyl, J. J.: 2001, The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography, Acta Astronaut. 48, 559–565.Google Scholar
  46. Vasco, D. W., Wicks, C., Karanski, K., and Marques, O.: 2002, Geodetic imaging: Reservoir monitoring using satellite interferometry, Geophys. J. Int. 149, 555–571.CrossRefGoogle Scholar
  47. Wadge, G.: 2003, A strategy for the observation of volcanism on Earth from Space, Phil Trans. R. Soc. Lond. A 361, 145–156.Google Scholar
  48. Wadge, G., Cabey, L., Lomas-Clarke, S., Palmer, M. D., and Smith, A. 2000, Operational use of InSAR for volcano observatories: experience in local reception at Montserrat, In: Proc. ERSENVISAT Symposium, 16–20 October, 2000, Gothenburg, Sweden.Google Scholar
  49. Wadge, G., Scheuchl, B., and Stevens, N. F.: 2002, Spaceborne radar measurements of the eruption of Soufriere Hills Volcano, Montserrat, In: T. H. Druitt, and B. P. Kokelaar (eds.), The Eruption of Soufriere Hills Volcano, Montserrat from 1995 to 1999, Geological Society, London, Memoir 21, pp. 583–594.Google Scholar
  50. Wadge, G., Webley, P. W., James, I. N., Bingley, R., Dodson, A., Waugh, S., Veneboer, T., Puglisi, G., Mattia, M., Baker, D., Edwards, S. C., Edwards, S. J., and Clarke, P. J.: 2003, Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna, Geophys. Res. Lett. 29, 10.1029/2002GL015159.Google Scholar
  51. Werner, M.: 2001, Shuttle Radar Topography Mission (SRTM): Mission overview, Frequenz 55, 75–79.Google Scholar
  52. Wicks, C. W., Dzurisin, D., Ingebritsen, S., Thatcher, W., Lu, Z., and Iversen, J.: 2002, Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA, Geophys. Res. Lett. 29, 10.1029/2001GL014205.Google Scholar
  53. Williams, C. A. and Wadge, G.: 1998, The effects of topography on magma chamber deformation models; application to Mt. Etna and radar inferferometry, Geophys. Res. Lett. 25, 1549–1552.Google Scholar
  54. Williams, S., Bock, Y., and Fang, P.: 1998, Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products, J. Geophys. Res. 103, 27051–27067.Google Scholar
  55. Zebker, H. A., Rosen, P., Hensley, S., and Mouginis-Mark, P. J.: 1996, Analysis of active lava flows on Kilauea Volcano, Hawaii, using SIR-C radar correlation measurements, Geology 24, 495–498.CrossRefGoogle Scholar
  56. Zebker, H. A., Rosen, P.A., and Hensley, S.: 1997, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res. 102, 7547–7563.CrossRefGoogle Scholar
  57. Zebker, H. A., Amelung, F., and Jonsson, S.: 2000, Remote sensing of volcano surface and internal processes using radar interferometry, Remote Sensing of Active Volcanism, Am. Geophys. Union, Geophys. Monograph 116, 179–205.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Hazards GroupInstitute of Geological and Nuclear SciencesLower HuttNew Zealand
  2. 2.Environmental Systems Science CentreUniversity of ReadingUnited Kingdom

Personalised recommendations