Natural Hazards

, Volume 32, Issue 1, pp 25–36

Effects of solar activity on myocardial infarction deaths in low geomagnetic latitude regions

  • Blanca Mendoza
  • Rosa Diaz-Sandoval
Article

Abstract

We study the effect of solar activity on the incidence of myocardial infarction deaths (MID) in Mexico. We work with 129,917 cases along 1996–1999, grouping the data by sex and age, and considering the solar cycle phases. At higher frequencies the circaseptan is the most persistent periodicity in MID occurrence. During solar minimum the circaseptan period is not detectable compared with solar maximum. During Forbush decreases and geomagnetic activity, most cases present a higher average MID occurrence. Furthermore the MID rate is higher as the level of the geomagnetic perturbation increases. Male MID rates are in general higher than female rates and the difference increases as the geomagnetic perturbation increases. The age group with the lowest MID incidence is 25 to 44 years, the age group of ≥65 years is the most vulnerable. We conclude that solar activity does affect MID at low geomagnetic latitudes and that the solar maximum is the most hazardous time for MID incidence.

myocardial infarctions cosmic rays geomagnetic phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breus, T. K., Cornélissen, G., Halberg, F., and Levitin, A. E.: 1995, Temporal associations of life with solar and geophysical activity, Ann. Geophys. 13, 1211–1222.Google Scholar
  2. Brown, F. A.: 1960, Response to pervasive geophysical factors and the biological clock problem, Cold Spring Harbor Symp. Quant. Biol. 25, 57–71.Google Scholar
  3. Burg, J. P.: 1972, The relationship between maximum entropy spectra and maximum likelihood spectra, Geophysics 37, 375–376Google Scholar
  4. Carey, C. F.: 2000, Manual de Washington de Terapéutica Médica. España: Edit. Mason S. A. Clasificación Internacional de Enfermedades IX Vol. 1: 1986, Sector de Salud, Subsecretaria de Servicios de Salud, Dirección General de Epidemiología, México, p. 281.Google Scholar
  5. Clasificación Estadística Internacional de Enfermedades y Problemas Relacionados con la Salud X, Vol. 2: 1995, Organización Panamericana de la Salud, pp. 460–461.Google Scholar
  6. Cornélissen, G., Broda, H., and Halberg, F.: 1986, Does Gonyaulax polyedra measure a week?, Cell Biophys. 8, 69–85.Google Scholar
  7. Cornélissen, G., A., Halberg, F., Breus, T. K., Syutkina E. V., Baevsky, R., Weydahal, A., Watanabe, Y., Otsuka, K., Siegelova, J., Fiser, B., and Bakken, E. E.: 1995, Non-photic solar associations of heart rate variability and myocardial infarction, J. Atm. Solar-Terrestrial Phys. 64, 707–720.Google Scholar
  8. Cornélissen, G. A., Wendt, H.W., Guillaume, F., Bingham, C., Halberg, F., Breus, T. K., Rapoport, S., and Komarov, F.: 1994, Disturbances of the interplanetary magnetic field and human pathology, Chronobiologia 21, 151–154.Google Scholar
  9. Díaz-Sandoval, R. and Mendoza, B.: 2002, Study of the interaction between biological cells of different shapes and sizes and electromagnetic fields produced by natural phenomena, Natural Hazards, in press.Google Scholar
  10. Garcia, L., Hermida, R. C., Ayala, D. E., and Vazquez, A.: 1995, Reproducible endogenous circaseptan variation in neonatal blood pressure, Biological Rhythm Research 26, 392–393.Google Scholar
  11. Halberg, F.: 1980, Chronobiology: methodological problems, Acta Med. Rom. 18, 399–440.Google Scholar
  12. Halberg, F., Breus, T. K., Cornélissen, G., Bingham, C., Hillman, D. C., Rigatuso, J., Delmore, P., and Bakken, E.: 1991, International womb-to-tomb chronome initiative group: Chronobioloigy in space, University of Minnesota/Medtronic Chronobiology Seminar Series 1, p. 21Google Scholar
  13. Halberg, F., Cornélissen, G., Wrbsky, P., Johnson, D., Rigatuso, J., Tarquini, B., Mainardi, G., Breus, T., Syutkina, E. V., Grigoriev, A. E., Abramian, A., Mitish, M., Wakasugi, K., and Tamura, K.: 1994, About 3.5-day (circasemiseptan) and about 7-day (circaseptan) blood pressure features in human prematurity, Chronobiology 21 146–151.Google Scholar
  14. Halberg, F., Cornélissen, G., Otsuka, K., Watanabe, Y., Katinas, G. S., Burioka, N., Delyunkov, A., Gorgo, Y., Zhao, Z., Weydahl, A., Sothern, R. B., Siegelova, J., Fiser, B., Dusek, J., Syutkina, E. V., Perfetto, F., Tarquini, R., Singh, R. B., Rhees, B., Lofstrom, D., Lofstrom, P., Cort Johnson, P. W., Schwartzkopff, O., and BIOCOS Study Group.: 2000, Cross-spectrally coherent ~10.5 and 21-year biological and physical cycles, magnetic storms and myocardial infarctions, Neuroendocrinology Lett. 21, 233–258.Google Scholar
  15. Hurtado, A., Valdes-Galicia, J. F., and Musalem, O.: 1996–1999, NM Technical Reports, edited by Instituto de Geofisica UNAM, México.Google Scholar
  16. Kawahara, K., Levi, F., Halberg, F., Rynasiewicz, J., and Sutherland, D.: 1982, Circaseptan bioperiodicity in rat allograft rejection, in R. Takahashi et al. (eds), Proc. 8th IUPHAR Cong. and Sat Symposia, Nagasaki, July 1981, Pergamon Press, Oxford, pp. 273–280.Google Scholar
  17. Khomeriki, O., Paatashvili, T., Gheonjian, L. and Kapanadze, N.: 1998, The influence of 7-day variations of interplanetary magnetic field on the frequency of myocardial infarctions, Bull. Georgian Acad. Sci. 158, 123–126.Google Scholar
  18. Lethbridge, M.: 1990, Thunderstorms, cosmic rays and solar-lunar influences, J. Geophys. Res. 95, 13645–13649.Google Scholar
  19. Marques, M. D., Cutkomp, L. K., Cornelissen, G., Marques, N., and Halberg, F.: 1987, Life span of sprintail on 12-h shifts at varying intervals of 12-hourly alternation in ambient temperature, Prog. Clin. Biol. Res. 227A, 257–264.Google Scholar
  20. Mendoza, B. and Díaz-Sandoval, R.: 2000, Relationship between solar activity and myocardial infarctions in Mexico City, Geofísica Internacional 39, 53–56.Google Scholar
  21. Schlegel, K., Diendorfer, G., Thern, S., and Schmidt, M.: 2001, Thunderstorms, lightning and solar activity — Middle Europe, J. Atm. Solar-Terrestrial Phys. 63, 1705–1713.Google Scholar
  22. Schweiger, H. G., Berger, S., Kretschmer, H., Mörler, H., Halberg E., Sothern, R. B., and Halberg, F.: 1986, Evidence for a circaseptan and a circasemiseptan growth response to light/dark cycle shifts in nucleated and enucleated acetabularia cells, respectively, Proc Natl. Acad. Sci. USA 83, 8619–8623.Google Scholar
  23. Villoresi, G., Breus, T. K., Iucci, N., Dorman, L. I., and Rapoport, S. I.,: 1994a, The influence of geophysical and social effects on the incidence of clinically important pathologies (Moscow 1979–1981), Physica Medica 10, 79–91.Google Scholar
  24. Villoresi, G., Kopytenko, Y. A., Ptitsyna, N. G., Tyasto, M. I., Kopytenko, E. A., Iucci, N. and Voronov, P. M.: 1994b, The influence of geomagnetic storms and man-made magnetic field disturbances on the incidence of myocardial infarctions in St. Petersburg (Russia), Physica Medica 10, 107–117.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Blanca Mendoza
    • 1
  • Rosa Diaz-Sandoval
    • 1
  1. 1.Instituto de Geofísica UNAM, Ciudad UniversitariaMéxico D.F.México. Phone

Personalised recommendations