Advertisement

Natural Hazards

, Volume 30, Issue 3, pp 451–472 | Cite as

Validation of Spatial Prediction Models for Landslide Hazard Mapping

  • Chang-Jo F. Chung
  • Andrea G. Fabbri
Article

Abstract

This contribution discusses the problemof providing measures of significance ofprediction results when the predictionswere generated from spatial databases forlandslide hazard mapping. The spatialdatabases usually contain map informationon lithologic units, land-cover units,topographic elevation and derived attributes(slope, aspect, etc.) and the distributionin space and in time of clearly identifiedmass movements. In prediction modelling wetransform the multi-layered databaseinto an aggregation of functional values toobtain an index of propensity of the landto failure. Assuming then that the informationin the database is sufficiently representativeof the typical conditions in which the massmovements originated in space and in time,the problem then, is to confirm the validity ofthe results of some models over otherones, or of particular experiments that seem touse more significant data. A core pointof measuring the significance of a prediction isthat it allows interpreting the results.Without a validation no interpretation is possible,no support of the method or of theinput information can be provided. In particularwith validation, the added value canbe assessed of a prediction either in a fixedtime interval, or in an open-ended time orwithin the confined space of a study area.Validation must be of guidance in datacollection and field practice for landslidehazard mapping.

Validation spatial data prediction models , future landslide hazard quantitative models visualization ranking interpretation of prediction results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrara, A., Cardinali, M, Guzzetti, F., and Reichenbach, P.: 1995, GIS technology in mapping landslide hazard, In: A. Carrara and F. Guzzetti (eds.), Geographic Information Systems in Assessing Natural Hazards, Kluwer, Dordrecht, pp. 125–175.Google Scholar
  2. Chung, C. F. and Fabbri, A. G.: 1993, The representation of geoscience information for data integration, Nonrenewable Resources, 2-2, 122–139.Google Scholar
  3. Chung, C. F., Fabbri, A. G., Van Westen, C. J.: 1995, Multivariate regression analysis for landslide hazard zonation, In: A. Carrara and F. Guzzetti (eds), Geographic Information Systems in Assessing Natural Hazards, Kluwer, Dordrecht, pp. 107–133.Google Scholar
  4. Chung, C. F. and Fabbri, A. G.: 1998, Three Bayesian prediction models for landslide hazard, In: A. Bucciantti (ed.), Proceedings of International Association for Mathematical Geology 1998 Annual Meeting (IAMG'98), Ischia, Italy, pp. 204–211.Google Scholar
  5. Chung C. F. and Fabbri, A. G.: 1999, Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering and Remote Sensing 65-12, 1389–1399.Google Scholar
  6. Chung, C. F. and Fabbri, A. G.: 2001, Prediction model for landslide hazard using a Fuzzy set Approach, In: M. Marchetti and V. Rivas (eds), Geomorphology and Environmental Impact Assessment, Balkema, Rotterdam, pp. 31–47.Google Scholar
  7. Chung, C. F. and Fabbri, A. G.: 2002, Modeling the conditional probability of the occurrence of future landslides in a study area characterized by spatial data, Proceedings of 2002 ISPRS (International Society for Photogrammetry and Remote Sensing) Meeting, Ottawa, Canada, July, 2002, in press.Google Scholar
  8. Chung, C. F. and Jibson, R. W.: 2002, Quantitative prediction model for landslides hazard in the Northridge area, California, in preparation.Google Scholar
  9. Chung, C. F. and Perret, D.: 2002, Landslide hazard mapping in La Baie, Quebec, Canada, in preparation.Google Scholar
  10. Jibson, R. W., Harp, E. L., and Michael, J. A.: 1998, A method to produce probabilistic seismic landslide hazard maps. In: A. Bucciantti (ed.), Proceedings of International Association for Mathematical Geology 1998 Annual Meeting (IAMG'98), Ischia, Italy, pp. 211–217.Google Scholar
  11. Leroi, E.: 1996, Landslide hazard - Risk maps at different scales: Objectives, tools and developments, In K. Senneset (ed.), Landslides. Balkema, Rotterdam, pp. 35–51.Google Scholar
  12. Packard N. H. and Wolfram S.: 1985, Two-dimensional cellular automata, Journal of Statistical Physics 38, 901–946.Google Scholar
  13. Panizza, M., Corsini, M., Soldati, M., and Tosatti, G.: 1998, Report on the use of new landslide susceptibility mapping techniques, In: J. Corominas, J. Moya, A. Ledesma, J. A. Gili, A. Loret, and J. Rius (eds), New Technologies for Landslide Hazard Assessment and Management in Europe (NEWTECH). Final Report, October 1998 of CEC Environment Programme Contract ENV-CT96-0248, UPC, Barcelona, pp. 13–31.Google Scholar
  14. Terlien, M. T. J., Van Westen, C. J., and van Asch, T. W. J.: 1995, Deterministic modeling in GIS based landslide hazard assessment, In: A. Carrara and F. Guzzetti (eds), Geographic Information Systems in Assessing Natural Hazards, Kluwer, Dordrecht, pp. 57–78.Google Scholar
  15. Van Westen, C. J.: 1993, GISSIZ: Training package for geographic information systems in slope instability zonation. Volume 1 - Theory, International Institute for Aerospace Survey and Earth Sciences (ITC) Publication N. 15, 245 pp.Google Scholar
  16. Varnes D. J.: 1984, Landslides Hazard Zonation: A Review of Principles and Practice, UNESCO, Paris, Natural Hazards, Vol. 3, 63 pp.Google Scholar
  17. Wang, S.-Q. and Unwin, D. J.: 1992. Modeling landslide distribution on loess soils in China: an investigation, International Journal of Geographic Information Systems 6-5, 391–405.Google Scholar
  18. Zêzere, J. L.: 1996a, Landslides in the North of Lisbon region, In: A. B. Ferreira and G. T. Vieira (eds), Fifth European Intensive Course on Applied Geomorphology - Mediterranean and Urban Areas, Departamento de Geografia, Universidade de Lisboa, pp. 79–89.Google Scholar
  19. Zêzere, J. L.: 1996b, Mass movements and geomorphological hazard assessment in the Trancao valley, between Bucelas and Tojal, In: A. B. Ferreira and G. T. Vieira (eds), Fifth European Intensive Course on Applied Geomorphology - Mediterranean and Urban Areas, Departamento de Geografia, Universidade de Lisboa, pp. 101–105.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Chang-Jo F. Chung
    • 1
  • Andrea G. Fabbri
    • 2
  1. 1.Geological Survey of CanadaOttawaCanada
  2. 2.International Institute of Aerospace Surveying and Earth SciencesThe Netherlands Fax

Personalised recommendations