Natural Hazards

, Volume 30, Issue 3, pp 341–360 | Cite as

Predictive GIS-Based Model of Rockfall Activity in Mountain Cliffs

  • J. Marquínez
  • R. Menéndez Duarte
  • P. Farias
  • M. JiméNez Sánchez

Abstract

Rockfall susceptibility has been analysed in mountain cliffs of the Cantabrian Range, North Spain. The main aim of this analysis has been to build a predictive model of rockfall activity from a low number of environmental and geological variables. The rockfall activity has been quantified in a GIS. The cartographic information used shows the spatial distribution of all the recent talus screes as well as their associated source areas in the rock-slopes. The area relation At/Ar (recent talus scree polygon/source basins) in the rock slopes has been used as the rockfall activity indicator. This relation has been validated in 50 pilot rock-slopes and compared with the relation number of recent rock fragments/source basin, obtained from field work. The environmental factors causing rockfall depend on the rock slope situation, and these are: altitude and sun radiation on the rock cliff. The geological factors considered are: lithology, relative position of the main discontinuities with respect to the topographic surface and two morphologic parameters: the roughness and slope gradient. A logistic regression analysis has been applied to a population of 442 limestone and quartzite rock cliffs. The dependent variable is the rockfall activity indicator, which allows the definition of two classes of rock cliff units: low and high activity. The independent variables are altitude, sun radiation (equinox radiation, summer solstice radiation, winter solstice radiation), slope roughness, slope gradient,anisotropy and lithology. Results suggest that it is possible tobuild a valid cartographic predictive model for rockfall activity in mountain rock cliffs from a limited number of easily obtainable variables. The method is especially applicable in massive rock slopes or in regions with uniform rock mass characteristics.

rockfall activity GIS prediction GIS-based models statistical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, R. J. and Kimber, O. G.: 1998, Modelling failure mechanisms to explain rock slope change along the Isle of Purbeck Coast, UK, Earth Surface Processes and Landforms 23, 731–750.Google Scholar
  2. André, M. F.: 1986, Dating slope deposits and estimating rates of rock fall wall retrat in Northwest Spitsbergen by lichenometry, Geografiska Annaler 68A(1-2), 65–75.Google Scholar
  3. André, M. F.: 1988, Vitesses d'acumulation des debris rocheaux au pied des parois supraglaciares du nord-ouest du Spitsberg, Z. Geomorph. N. F. 32(3), 351–373.Google Scholar
  4. André, M. F.: 1997, Holocene rockwall retreat in svalbard: a triple-rate evolution, Earth Surface Processes and Landforms 22, 423–440.Google Scholar
  5. Augustinus, P. C.: 1992, The influence of rock mass strength on glacial valley cross-profile morphometry: a case study from the Southern Alps, New Zealand, Earth Surface Processes and Landforms 17, 39–51.Google Scholar
  6. Augustinus, P. C.: 1995, Rock mass strength and the stability of some glacial valley slopes, Z. Geomorphologie N. F. 39(1), 55–68.Google Scholar
  7. Baeza, C. and Corominas, J.: 1997, Susceptibility analysis of shallow landsliding by multivariate techniques. In: Vera Pawlowsky Glahn (ed), Proceedings of the Third Annual Conference of the International Association for Mathematical Geology, IAMG'97, 2, 928–933.Google Scholar
  8. Bieniawski, Z. T.: 1989, Engineering Rock Mass Classifications, John Wiley & Sons, pp. 1–272Google Scholar
  9. Bjerrum, L. and Jorstad, F.: 1968, Stability of rock slopes in Norway, Norwegian Geotechnical Institute Publication 79, 1–11.Google Scholar
  10. Carrara, A.: 1983, Multivariate models for landslide hazard evaluation, Mathematical Geology 15(3), 403–427.Google Scholar
  11. Carrara, A.: 1988, Landslide hazard mapping by statistical methods. A “black box” approach. The Proceedings of the Workshop on Natural Disasters in European Mediterranean Countries, Italy, pp. 205–224.Google Scholar
  12. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: 1991, GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms 16, 427–445.Google Scholar
  13. Carrara, A., Cardinali, M., Guzzetti, F., and Reichenbach, P.: 1995, GIS Technology in mapping landslide hazard. In: A. Carrara and F. Guzzetti (eds), Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 135–175.Google Scholar
  14. Carson, M. A. and Kirkby, M. J.: 1975, Hillslope Form and Process, Cambridge University Press, Oxford.Google Scholar
  15. Chung, C. F., Fabbri, A. G., and Van Westen, C. J.: 1995, Multivariate regression analysis for landslide hazard zonation. In: A. Carrara and F. Guzzetti (eds), Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 107–133.Google Scholar
  16. Coutard, J-P and Francou, B.: 1989, Rock temperature measurements in two alpine environments: implications for frost shattering, Artic and Alpine Research 21(4), 399–416.Google Scholar
  17. Gardner, J.: 1983, Geomorphic significance of avalanches in the Lake Louise Area, Alberta, Canada, Arct. Alp. Res. 2, 135–144.Google Scholar
  18. Guzzetti, F.: 1993, Landslides hazard and risk by GIS-based multivariate models. In: P. Reichenbach, F. Guzzetti and A. Carrara (eds), Abstracts, Proceed. Int. Workshop GIS in Assess. Nat. Hazards, Perugia.Google Scholar
  19. Hall, K.: 1988, The interconnection of wetting and drying with freeze-thaw: some new data, Z. Geomorph. N. F. Suppl.-Bd. 71, 1–11.Google Scholar
  20. Hall, K.: 1991, Rock moisture data from the Juneau Icefield (Alaska) and its significance for mechanical weathering studies, Permafrost and Periglaciar Processes 2, 321–330.Google Scholar
  21. Hall, K. and Hall, A.: 1991, Thermal gradients and rock weathering at low temperatures: some simulation data, Permafrost and Periglaciar Processes 2, 103–112.Google Scholar
  22. Hétu, B. and Gray, J. T.: 2000, Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the Northern Gaspé Peninsula, Québec, Geomorphology 328, 335–355.Google Scholar
  23. Hodgson, M. E. and Gaile, G. L.: 1996, Characteristic mean and dispersion in surface orientations for a zone, Int. J. Geograph. Info. Syst. 10(7), 817–830.Google Scholar
  24. Lafortune, M., Filion, L., and Hétu, B.: 1997, Dynamique d'un front forestier sur un talus d'éboulis actif en climat tempèré froid (Gaspésie, Québec). Géog. Physique et Quaternary 51, 67–80.Google Scholar
  25. Luckman, B. H.: 1976, Rockfall and rockfall inventory data: some observations from Surprise Valley, Jasper National Park, Canada, Earth Surface Processes and Landforms 1, 287–298.Google Scholar
  26. Luckman, B. H. and Fiske, C. J.: 1995, Estimating long-term rockfall accretion rates by lichenometry. In: O. Slaymarker (ed), Steepland Geomorphology, John Wiley, Chichester, pp. 233–255.Google Scholar
  27. Manté, Cl.: 1985, Evolution du champ de temperature dans une paroi rocheuse naturelle: le cas de la Crête de Vars, Bulletin du Centre de Geomophologie du C.N.R.S., Caen 30, 99–139.Google Scholar
  28. Matsuoka, N.: 1994, Diurnal freeze-thaw depth in rockwalls: field measurements and theoretical considerations, Earth Surface Processes and Landforms 19, 423–435.Google Scholar
  29. Matsuoka, N. and Sakai, H.: 1999, Rockfall activity from an alpine cliff during thawing periods, Geomorphology 28, 309–328.Google Scholar
  30. McCaroll, D., Shakesby, R. A., and Matthews, J. S.: 1998, Spatial and temporal patterns of Late Holocene rockfall activity on a Norwegian talus slope: liquenometric and simulation-modelling approach, Artic and Alpine Research 30, 51–60.Google Scholar
  31. Menéndez Duarte, R. and Marquínez, J.: 1996, Glaciarismo y evolución postglaciar de las vertientes en el Valle de Somiedo. Cordillera Cantábrica, Cuaternario y Geomorfología 10(3-4), 21–31.Google Scholar
  32. Menéndez Duarte, R. and Marquínez, J.: 2002, The influence of environmental and lithologic factors on rockfall at regional scale: an evaluation using GIS, Geomorphology 43, 117–136.Google Scholar
  33. Mudgride, S. A. and Young, H. R.: 1983, Desintegration of shale by cyclic wetting and drying and frost action, Can. J. Earth Science 20, 568–576.Google Scholar
  34. Rapp, A.: 1960, Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia, Geogr. Ann. 42a, 65–200.Google Scholar
  35. Romana, M.: 1991, SRM classification, Seventh Int. Cong. Rock Mech. Balkema, pp. 955–960.Google Scholar
  36. Rowbotham, D. N. and Dudycha, D.: 1998, GIS modelling of slope stability in Phewa Tal watershed, Nepal, Geomorphology 26(1/3), 151–170.Google Scholar
  37. Selby, M. J.: 1980, A rock mass strength classification for geomorphic purposes: with test from Antarctica and New Zealand, Z. Geomorphologie N. F. 24, 31–51.Google Scholar
  38. Selby, M. J.: 1982, Hillslope Materials and Processes, Oxford University Press, Oxford, pp. 1–264.Google Scholar
  39. Selby, M. J.: 1986, Rock Slopes. In: M. G. Anderson and K. S. Richards (eds), Slope Stability, John Wiley & Sons pp. 475–504Google Scholar
  40. Terzaghi, K.: 1972, Stability of steep slopes on hard unweathered rock, Géotechnique 12, 251–270.Google Scholar
  41. van Westen, C. J., Rengers, N., and Terlien, J.: 1997, Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation, Geol. Rundsch 86, 404–414.Google Scholar
  42. Van Westen, C. J., Seijmonsbergen, A. C., and Mantovani, F.: 1999, Comparing landslide hazard maps, Natural Hazards 20, 137–158.Google Scholar
  43. Whalley, W. B.: 1984, Rockfalls. In: D. Brunsden and D. B. Prior (eds), Slope Instability, JohnWiley, Chichester, pp. 217–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • J. Marquínez
    • 1
  • R. Menéndez Duarte
    • 1
  • P. Farias
    • 2
  • M. JiméNez Sánchez
    • 2
  1. 1.INDUROTUniversidad de OviedoOviedo
  2. 2.Dpto. de GeologíaUniversidad de OviedoOviedo

Personalised recommendations