Natural Hazards

, Volume 30, Issue 3, pp 281–295 | Cite as

A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain)

  • Núria Santacana
  • Baeza Baeza
  • Jordi Corominas
  • Ana De Paz
  • Jordi Marturiá
Article

Abstract

This paper presents a GIS-aided procedure for shallow landslide susceptibility mapping at a regional scale. Most of the input data for the susceptibility assessment have been captured automatically. A total of 13 parameters, related to the slope geometry, have been derived from the digital elevation model (DEM) while vegetation cover and thickness of superficial formations have been obtained from photointerpretation and field work. The susceptibility assessment is based on multivariate statistical techniques (discriminant analysis), which hasbeen tested in a pilot area in La Pobla de Lillet (Eastern Pyreenes, Spain). Theresults obtained using a random sample show that 82% of all the cells, and 90% of cells including slope failures, have been properly classified. A susceptibility map based on the discriminant function has given consistent results. The susceptibilityassessment is very sensitive to the parameters selected. Compared to thetraditional methods, the main advantage of the GIS-aided procedure is the rapidityprovided by the automatic capture of parameters. It also has the capability of coveringlarge areas, and the objectivity and reproducibility of the results. The main drawbackis that, at present, not all regions have DEM accurate enough to cope with small landslides.

landslide-susceptibility map shallow landslides GIS multivariate techniques DEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeza, C.: 1994, 'Evaluación de las condiciones de rotura y de la movilidad de los deslizamientos superficiales mediante el uso de técnicas de anàlisis multivariante, Ph.D. thesis, Technical University of Catalonia, Barcelona. Unpublished.Google Scholar
  2. Baeza, C. and Corominas, J.: 2001, Assessment of shallow landslide susceptibility by means of multivariate statistical techniques, Earth Surface Processes and Landforms 26: 1251–1263.Google Scholar
  3. Brabb, E. E.: 1984, Innovative approaches to landslide hazard and risk mapping, IV International Symposium on Landslides, Vol. 1, Toronto, pp. 307–323.Google Scholar
  4. Carrara, A.: 1983. Multivariate models for landslide hazard evaluation, Mathematical Geology 15(3), 403–426.Google Scholar
  5. Carrara, A. Catalano, E., Sorriso-Valvo, M., Reali, C., and Osso, I.: 1978. Digital terrain analysis for land evaluation, Geologia Applicata e Idrogeologia 13, 69–127.Google Scholar
  6. Carrara, A., Cardinali, M., Guzzetti, F., and Reichenbach, P.: 1995, GIS technology in mapping landslide hazard, In: A. Carrara and F. Guzzetti (eds), Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publishers, pp. 135–175.Google Scholar
  7. Cruden, D. M. and Varnes, D. J.: 1996, Landslide types and processes', In: A. K. Turner and R. L. Schuster (eds), Landslides: Investigation and Mitigation, TRB Special Report, 247, National Academy Press, Washington, pp. 36–75.Google Scholar
  8. Dillon, W. R. and Goldstein, M.: 1986, Multivariate Analysis. Methods and Applications, JohnWiley and Sons Ltd., 565 pp.Google Scholar
  9. Gallart, F. and Clotet, N.: 1988, Some aspects of the geomorphic processes triggered by an extreme rainfall event: The November 1982 flood in the Eastern Pyrenees, Catena Supplement 13, 79–95.Google Scholar
  10. Greenway, D. R.: 1987, 'Vegetation and slope stability', In: Anderson and Richards (eds), Slope Stability, John Wiley & Sons, pp. 187–231.Google Scholar
  11. Jones, F. O., Embody, D. R., and Peterson, W. C.: 1961, Landslides along the Columbia river valley, Northeastern Washington, U.S. Geological Survey Professional Paper 367, 1–98.Google Scholar
  12. Mu\(\ddot n\)oz, J. A., Martínez, A., and Vergés, J.: 1986, Thrust sequences in the Spanish Eastern Pyrenees, Journal of Structural Geology 8, 399–405.Google Scholar
  13. Neuland, H.: 1976, A prediction model of landslips', Catena 3, 215–230.Google Scholar
  14. Nilsen, T. H. Wright, R. H. Vlasic, T. C., and Spangle, W. E.: 1979, Relative slope stability and landuse planning in the San Francisco Bay region, California, U.S. Geological Survey Professional Paper 944, 96 pp.Google Scholar
  15. Reneau, S. L. and Dietrich, W. E.: 1987, The importance of hollows in debris flow studies; examples from Martin County, California, Geological Society of America, Reviews in Engineering Geology VII, 165–180.Google Scholar
  16. Oyagi, N.: 1984, Landslides in weathered rocks and residuals soils in Japan an surrounding areas: state-of-the-art report, 4th International Symposium on Landslides, Vol. 3, Toronto, pp. 1–31.Google Scholar
  17. Santacana, N.: 2001, Análisis de susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de Sistemas de Información Geográfica. Aplicación a la cuenca alta del Río Llobregat, Ph.D. thesis, Technical University of Catalonia, Barcelona. http://www.tdcat.cesca.es/TDCat-0713101-113341/Google Scholar
  18. Van Westen, C. J.: 1994, GIS in landslide hazard zonation: A review, with examples from the Andes of Colombia, In: M. F. Price & D. I. Heywood (eds), Mountain Environments and Geographic Information Systems, Taylor and Francis Publishers, pp. 135–165.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Núria Santacana
    • 1
  • Baeza Baeza
    • 1
  • Jordi Corominas
    • 1
  • Ana De Paz
    • 2
  • Jordi Marturiá
    • 2
  1. 1.Department of Geotechnical Engineering and Geosciences, Civil Engineering SchoolUniversitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.Institut Cartográfic de CatalunyaBarcelonaSpain

Personalised recommendations