Journal of Neurocytology

, Volume 33, Issue 4, pp 429–440

Chemoarchitectonic heterogeneities in the primate zona incerta: Clinical and functional implications

  • John Mitrofanis
  • Keyoumars Ashkan
  • Bradley A. Wallace
  • Alim-Louis Benabid
Article

Abstract

In view of the recent focus on the zona incerta (and surrounding regions) as a target for deep brain stimulation in patients with Parkinson Disease, we have explored incertal cyto and chemoarchitecture in normal and MPTP (methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated macaque monkeys. Brains were processed for routine tyrosine hydroxylase (TH), nitric oxide synthase (NOs), parvalbumin (Pv) and calbindin D 28k (Cal) immunocytochemistry, as well as for Nissl staining. We show four main sectors in the zona incerta, namely rostral, dorsal, ventral and caudal, each with a largely distinct cytoarchitecture. Each of the antibodies screened had signature distribution patterns across the zona incerta; TH+ cells were localised within the rostral sector, NOs+ cells were concentrated in the dorsal sector, Pv+ cells were found mainly in the ventral sector and Cal+ cells were distributed uniformly across all sectors. These patterns match closely those reported in non primates. We found no major differences in the distribution and shape of labelled cells in the zona incerta of MPTP-treated monkeys when compared to control. In conclusion, we report that the primate zona incerta shows considerable cyto and chemoarchitectonic heterogeneity; that it forms a nucleus with distinct sectors presumably associated with diverse functions--from generating arousal to shifting attention, and from controlling visceral activity to influencing posture and locomotion. These functions have been proposed for the zona incerta of non primates. Our results have clinical implications, in that deep brain stimulation of the zona incerta (or parts thereof) could manifest in signs and symptoms other than those associated with the motor system. Such clinical stimulations could well involve other systems, including those of arousal, attention and visceral control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkan, K., Wallace, B. A., Mitrofanis, J., Brard, B. Y., Fagret, D. & Benabid, A. L. (2004) MPTP modelling of Parkinson Disease: A behavioural, SPECT imaging and immunohistological correlative study. European Journal of Neuroscience submitted.Google Scholar
  2. Barker, D. A. & Dreher, B. (1998) Spatiotemporal patterns of ontogenetic expression of parvalbumin in the superior colliculi of rats and rabbits. Journal of Comparative Neurology 393, 210–230.Google Scholar
  3. Benabid, A. L., Pollack, P., Gross, C., Hoffmann, D., Benazzouz, A. & Gao, D. M. (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson Disease. Stereotactic Functional Neurosurgery 62, 76–84.Google Scholar
  4. Benabid, A. L., Benazzouz, A. & Pollak, P. (2002) Mechanisms of deep brain stimulation. Movement Disorders 17, S73–S74.Google Scholar
  5. Benazzouz, A., Boraud, T., Dubedat, P., Boireau, A., Stutzmann, J. M. & Gross, C. (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: Apilot study. European Journal of Pharmacology 284, 299–307.Google Scholar
  6. Bergman, H., Wichmann, T., Karmon, B. & Delong, M. R. (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology 72, 507–520.Google Scholar
  7. Berry, D. J., Ohara, P. T., Jeffrey, G. & Lieberman, A. R. (1986) Are there connections between the thalamic reticular nucleus and the brainstem reticular formation? Journal of Comparative Neurology 243, 347–362.Google Scholar
  8. Bezard, E., Boraud, T., Bioulac, B. & Gross, C. E. (1999) Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. European Journal of Neuroscience 11, 2167–2170.Google Scholar
  9. Ficalora, A. S. & Mize, R. R. (1989) The neurones of the substantia nigra and the zona incerta which project to the cat superior colliculus are GABA immunoreactive: A double label study using GABA immunocytochemistry and lectin retrograde transport. Neuroscience 29, 567–581.Google Scholar
  10. Gunluk, A. E., Bickford, M. E. & Sherman, S. M. (1994) Rearing with monocular lid suture induces abnormal NADPH-diaphorase staining in the lateral genicu-late nucleus of cats. Journal of Comparative Neurology 350, 215–228.Google Scholar
  11. Heise, C. E. & Mitrofanis, J. (2003) Evidence for a glutamatergic projection from the zona incerta to the basal ganglia in rats. Journal of Comparative Neurology 468, 482–495.Google Scholar
  12. Henderson, J. M., Pell, M., O'sullivan, D. J., Mccusker, E., Fung, V., Phedges, F. & Halliday, G. (2002) Postmortem analysis of bilateral Sub electrode implants in PD. Movement Disorders 17, 133–137.Google Scholar
  13. Kawana, E. & Watanabe, K. (1981) A cytoarchitectonic study of zona incerta in the rat. Journal Hirnforsch 22, 535–541.Google Scholar
  14. Kim, U., Gregory, E. & Hall, W. C. (1992) Pathway from the zona incerta to the superior colliculus in the rat. Journal of Comparative Neurology 321, 555–575.Google Scholar
  15. KÖhler, C. & Swanson, L. W. (1984) Acetylcholinesterase-containing cells in the lateral hypothalamic area are immunoreactive for alpha-melanocyte stimulating hormone (MSH) and have cortical projections in the rat. Neuroscience Letters 49, 39–43.Google Scholar
  16. Kolmac, C. I. & Mitrofanis, J. (1999a) Distribution of various neurochemicals within ZI: An immunocytochemical and histochemical study. Anatomy & Embryology 199, 265–280.Google Scholar
  17. Kolmac, C. I. & Mitrofanis, J. (1999b) Organisation of the basal forebrain projection to the thalamus in rats. Neuroscience Letters 272, 151–154.Google Scholar
  18. Kolmac, C. I., Power, B. D. & Mitrofanis, J. (1998) Patterns of connections between zona incerta and brainstem in rats. Journal of Comparative Neurology 396, 544–555.Google Scholar
  19. Ma, T. P., Hu, X.-J., Anavi, Y. & Rafols, J. A. (1992) Organisation of the zona incerta in the macaque: A Nissl and Golgi study. Journal of Comparative Neurology 320, 273–290.Google Scholar
  20. Ma, T. P. (1996) Saccade-related omnivectoral pause neurones in the primate the zona incerta. Neuroreport 7, 2713–2716.Google Scholar
  21. May, P. J., Sun, W. & Halls, W. C. (1997) Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat. Neuroscience 77, 1091–1114.Google Scholar
  22. Mitrofanis, J. & Mikuletic, L. (1999) Organisation of the cortical projection to the zona incerta of the thalamus. Journal of Comparative Neurology 412, 173–185.Google Scholar
  23. Mok, D. & Mogenson, G. J. (1986) Contribution of ZI to osmotically induced drinking in rats. American Journal of Physiology 251, 823–832.Google Scholar
  24. Nandi, D., Aziz, T. Z., Liu, X. & Stein, J. F. (2002) Brainstem motor loops in control of movement. Movement Disorders 17, 22–7.Google Scholar
  25. Nicolelis, M. A., Chapin, J. K. & Lin, R. C. (1995) Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Neuroscience 65, 609–631.Google Scholar
  26. Paxinos, G., Huang, X. F. & Toga, A. W. (1998) The Rhesus Monkey Brain. In Stereotaxic Coordinates. San Diego USA: Academic Press.Google Scholar
  27. PÈrier, C., Vila, M., FÉger, J., Agid, Y. & Hirsh, E. C. (2000) Functional activity of the zona incerta is altered after nigrostriatal denervation in hemiparkinsonian rats. Experimental Neurology 162, 215.Google Scholar
  28. Power, B. D. & Mitrofanis, J. (2001) Zona incerta: Substrate for contralateral interconnectivity in the thalamus of rats. Journal of Comparative Neurology 436, 52–63.Google Scholar
  29. Power, B. D., Kolmac, C. I. & Mitrofanis, J. (1999) Evidence for a large projection from the zona incerta to the dorsal thalamus. Journal of Comparative Neurology 404, 554–565.Google Scholar
  30. Reardon, F. M. & Mitrofanis, J. (2000) Organisation of amygdalothalamic pathways in rats. Anatomy & Embryology 201, 75–84.Google Scholar
  31. Roger M. & Cadusseau, J. (1985) Afferents to the zona incerta in the rat: A combined retrograde and anterograde study. Journal of Comparative Neurology 241, 480–492.Google Scholar
  32. Romanowski, C. A. J., Mitchell, I. J. & Crossman, A. R. (1985) The organisation of the efferent projections of the zona incerta. Journal of Anatomy 143, 75–95.Google Scholar
  33. Saper. C. B. (1984) Organisation of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. Journal of Comparative Neurology 222, 313–342.Google Scholar
  34. Shammah-Lagnado, S. J., Negrao, N. & Ricardo, J. A. (1985) Afferent connections of the zona incerta: A horseradish peroxidase study in the rat. Neuroscience 15, 109–134.Google Scholar
  35. Shaw, V. E. & Mitrofanis, J. (2001) Lamination of spinal cells projecting to zona incerta in rats. Journal of Neurocytology 30, 695–704.Google Scholar
  36. Shaw, V. E & Mitrofanis, J. (2002) Anatomical evidence for somatotopic maps in zona incerta of rat. Anatomy & Embryology 206, 119–130.Google Scholar
  37. Shiosaka, S., Kawai, Y., Shibasaki, T. & Tohyama, M. (1985) The descending alpha-MSHergic (alpha-melanocyte-stimulating hormone-ergic) projections from the zona incerta and lateral hypothalamic area to the inferior colliculus and spinal cord in the rat. Brain Research 338, 371–375.Google Scholar
  38. Skinner, R.D., Kinjo, N., Henderson, V. & Garcia-Rill, E. (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1, 183–186.Google Scholar
  39. Tanaka, J. & Seto, K. (1988) Lateral hypothalamic area and paraventricular nucleus connections with subfornical organ neurons: An electrophysiological study in the rat. Neuroscience Research 6, 45–52.Google Scholar
  40. Tonelli, L. & Chiaraviglio, E. (1995) Dopaminergic neurons in the zona incerta modulates ingestive behaviour in rats. Physiology and Behaviour 58, 725–729.Google Scholar
  41. Vaccaro, T. & Mitrofanis, J. (1997) Does the reticular thalamic nucleus project to the midbrain? Journal of Neurocytology 26, 223–239.Google Scholar
  42. Voges, J., Volkmann, J., Allert, N., Lehrke, R., Koulousakis, A., Freund, H. J. & Sturm, V. (2002) Bilateral high frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: Correlation of therapeutic effect with anatomical electrode position. Journal of Neurology 96, 269–279.Google Scholar
  43. Wallace, B. A., Ashkan, K., Mitrofanis, J., Brard, B. Y., Fagret, D. & Benabid, A. L. (2004) The protective effect of subthalamotomy on nigral degeneration in MPTP-treated primates. Movement Disorders 19(S9), 42.Google Scholar
  44. Wagner, C. K., Eaton, M. J., Moore, K. E. & Lookingland, K. J. (1995) Efferent projections from the region of the medial zona incerta containing A13 dopaminergic neurones: A PHAL anterograde tract-tracing study in the rat. Brain Research 677, 229–237.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • John Mitrofanis
    • 1
    • 2
  • Keyoumars Ashkan
    • 1
    • 3
  • Bradley A. Wallace
    • 1
    • 4
  • Alim-Louis Benabid
    • 1
  1. 1.Department of Clinical NeurosciencesUniversity of Joseph FourierGrenobleFrance;
  2. 2.Department of Anatomy & HistologyUniversity of SydneyAustralia
  3. 3.Department of NeurosurgeryUniversity of LondonLondonEngland
  4. 4.Department of NeurosurgeryUniversity of FloridaGainesvilleUSA

Personalised recommendations