Advertisement

Journal of Neurocytology

, Volume 33, Issue 3, pp 377–387 | Cite as

Dendrite and dendritic spine alterations in alzheimer models

  • Donna L. Moolman
  • Ottavio V. Vitolo
  • Jean-Paul G. Vonsattel
  • Michael L. Shelanski
Article

Abstract

Synaptic damage and loss are factors that affect the degree of dementia experienced in Alzheimer disease (AD) patients. Multicolor DiOlistic labeling of the hippocampus has been undertaken which allows the full dendritic arbor of targeted neurons to be imaged. Using this labeling technique the neuronal morphology of two transgenic mouse lines (J20 and APP/PS1) expressing mutant forms of the Amyloid Precursor Protein (APP), at various ages, have been visualized and compared to Wild Type (WT) littermate controls. Swollen bulbous dystrophic neurites with loss of spines were apparent in the transgenic animals. Upon quantification, statistically significant reductions in the number of spines and total dendrite area was observed in both transgenic mouse lines at 11 months of age. Similar morphological abnormalities were seen in human AD hippocampal tissue both qualitatively and quantitatively. Immunohistochemistry and DiOlistic labeling was combined so that Aβ plaques were imaged in relation to the dendritic trees. No preferential localization of these abnormal dystrophic neurites was seen in regions with plaques. DiI labeled reative astrocytes were often apparent in close proximity to Aβ plaques.

Keywords

Alzheimer Disease Amyloid Precursor Protein Dendritic Spine Dendritic Tree Dendritic Arbor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. ARENDT, T., SCHINDLER, C., BRUCKNER, M K., ESCHRICH, K., BIGL, V., ZEDLICK, D. & MARCOVA, L. (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein epsilon 4 allele. Journal of Neuroscience 17, 516–529.PubMedGoogle Scholar
  2. BOUTAJANGOUT, A., AUTHELET, M., BLANCHARD, V., TOUCHET, N., TREMP, G., PRADIER, L. & BRION, J. P. (2004) Characterisation of cytoskeletal.386 MOOLMAN, VITOLO, VONSATTEL and SHELANSKI abnormalities in mice transgenic for wild-type human tau and familial Alzheimer's disease mutants of APP and presenilin-1. Neurobiology of Disease 15,47–60.PubMedGoogle Scholar
  3. BUTTINI, M., YU, G. Q., SHOCKLEY, K., HUANG, Y., JONES, B., MASLIAH, E., MALLORY, M., YEO, T., LONGO, F. M. & MUCKE, L. (2002) Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein Edepends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. Journal of Neuroscience 2, 10539–10548.PubMedGoogle Scholar
  4. CORK, L. C., MASTERS, C., BEYREUTHER, K. & PRICE, D. L. (1990) Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. American Journal of Pathology 137, 1383–1392.PubMedGoogle Scholar
  5. DUFF, K., ECKMAN, C., ZEHR, C., YU, X., PRADA, C. M., PEREZ-TUR, J., HUTTON, M., BUEE, L., HARIGAYA, Y., YAGER, D., MORGAN, D., GORDON, M. N., HOLCOMB, L., REFOLO, L., ZENK, B., HARDY, J. & YOUNKIN, S. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.PubMedGoogle Scholar
  6. GAN, W. B., GRUTZENDLER, J., WONG, W. T., WONG, R. O. & LICHTMAN, J. W. (2000) Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219–225.PubMedGoogle Scholar
  7. GONATAS, N. K. (1967a) Neocortical synapses in a presenile dementia. Journal of Neuropathology and Experimental Neurology 26, 150–151.PubMedGoogle Scholar
  8. GONATAS, N. K., ANDERSON, W. & EVANGELISTA, I. (1967b) The contribution of altered synapses in the senile plaque: Anelectron microscopic study in Alzheimer's dementia. Journal of Neuropathology and Experimental Neurology 26,25–39.PubMedGoogle Scholar
  9. GRUTZENDLER, J., KASTHURI, N. & GAN, W. B. (2002) Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816.PubMedGoogle Scholar
  10. GRUTZENDLER, J., TSAI, J. & GAN, W. B. (2003) Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes. Methods 30, 79–85.PubMedGoogle Scholar
  11. HOLCOMB, L., GORDON, M. N., MCGOWAN, E., YU, X., BENKOVIC, S., JANTZEN, P., WRIGHT, K., SAAD, I., MUELLER, R., MORGAN, D., SANDERS, S., ZEHR, C., O'CAMPO, K., HARDY, J., PRADA, C. M., ECKMAN, C., YOUNKIN, S., HSIAO, K. & DUFF, K. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Genetics 4,97–100.Google Scholar
  12. HOLCOMB, L. A., GORDON, M. N., JANTZEN, P., HSIAO, K., DUFF, K. & MORGAN, D. (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: Lack of association with amyloid deposits. Behavioral Genetics 29, 177–185.Google Scholar
  13. HSIA, A. Y., MASLIAH, E., MCCONLOGUE, L., YU, G. Q., TATSUNO, G., HU, K., KHOLODENKO, D., MALENKA, R. C., NICOLL, R. A. & MUCKE, L. (1999) Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proceedings of the National Academy of Sciences 96, 3228–3233.Google Scholar
  14. HSIAO, K., CHAPMAN, P., NILSEN, S., ECKMAN, C., HARIGAYA, Y., YOUNKIN, S., YANG, F. & COLE, G. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.PubMedGoogle Scholar
  15. MASLIAH, E., TERRY, R. D., MALLORY, M., ALFORD, M. & HANSEN, L. A. (1990) Diffuse plaques do not accentuate synapse loss in Alzheimer's disease. American Journal of Pathology 137, 1293–1297.PubMedGoogle Scholar
  16. MASLIAH, E., ELLISMAN, M., CARRAGHER, B., MALLORY, M., YOUNG, S., HANSEN, L., DETERESA, R. & TERRY, R. D. (1992) Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer disease. Journal of Neuropathology and Experimental Neurology 51, 404–414.PubMedGoogle Scholar
  17. MASLIAH, E., MALLORY, M., DEERINCK, T., DETERESA, R., LAMONT, S., MILLER, A., TERRY, R. D., CARRAGHER, B. & ELLISMAN, M. (1993) Re-evaluation of the structural organization of neuritic plaques in Alzheimer's disease. Journal of Neuropathology and Experimental Neurology 52, 619–632.PubMedGoogle Scholar
  18. MASLIAH, E., SISK, A., MALLORY, M., MUCKE, L., SCHENK, D. & GAMES, D. (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease. Journal of Neuroscience 16, 5795–5811.PubMedGoogle Scholar
  19. MCKEE, A. C., KOWALL, N. W. & KOSIK, K.S.(1989) Microtubular reorganization and dendritic growth response in Alzheimer's disease. Annals of Neurology 26, 652–659.PubMedGoogle Scholar
  20. MUCKE, L., MASLIAH, E., YU, G. Q., MALLORY, M., ROCKENSTEIN, E. M., TATSUNO, G., HU, K., KHOLODENKO, D., JOHNSON-WOOD, K. & MCCONLOGUE, L. (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. Journal of Neuroscience 20, 4050–4058.PubMedGoogle Scholar
  21. PALOP, J. J., JONES, B., KEKONIUS, L., CHIN, J., YU, G. Q., RABER, J., MASLIAH, E. & MUCKE, L. (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proceedings of the National Academy of Sciences 100, 9572–9577.Google Scholar
  22. PRICE, D. L. & SISODIA, S. S. (1998) Mutant genes in familial Alzheimer's disease and transgenic models. Annual Reviews of Neuroscience 21, 479–505.Google Scholar
  23. PROBST, A., BASLER, V., BRON, B. & ULRICH, J. (1983) Neuritic plaques in senile dementia of Alzheimer type: A Golgi analysis in the hippocampal region. Brain Research 268, 249–254.PubMedGoogle Scholar
  24. RABER, J., WONG, D., YU, G. Q., BUTTINI, M., MAHLEY, R. W., PITAS, R. E. & MUCKE, L. (2000) Apolipoprotein E and cognitive performance. Nature 404, 352–354.Google Scholar
  25. REDWINE, J. M., KOSOFSKY, B., JACOBS, R. E., GAMES, D., REILLY, J. F., MORRISON, J. H., YOUNG, W. G. & BLOOM, F. E. (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: A magnetic resonance microscopy and stereologic analysis. Proceedings of the National Academy of Sciences 100, 1381–1386.Google Scholar
  26. SCHEIBEL, A. B. & TOMIYASU, U. (1978) Dendritic sprouting in Alzheimer's presenile dementia. Experimental Neurology 60, 1–8.PubMedGoogle Scholar
  27. SCHEIBEL, A. B. (1979) Dendritic changes in senile and presenile dementias. Research Publications of the Association for Research on Nervous and Mental Diseases 57, 107–124.Google Scholar
  28. TERRY, R. D., MASLIAH, E., SALMON, D. P., BUTTERS, N., DETERESA, R., HILL, R., HANSEN, L. A. & KATZMAN, R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology 30, 572–580.PubMedGoogle Scholar
  29. WESTERMAN, M. A., COOPER-BLACKETER, D., MARIASH, A., KOTILINEK, L., KAWARABAYASHI, T., YOUNKIN, L. H., CARLSON, G. A., YOUNKIN, S. G. & ASHE, K. H. (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. Journal of Neuroscience 22, 1858–1867.PubMedGoogle Scholar
  30. WU, C. C., CHAWLA, F., GAMES, D., RYDEL, R. E., FREEDMAN, S., SCHENK, D., YOUNG, W. G., MORRISON, J. H. & BLOOM, F. E. (2004) Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: Digital morphometric analyses. Proceedings of the National Academy of Sciences 101, 7141–7146.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Donna L. Moolman
    • 1
  • Ottavio V. Vitolo
    • 1
  • Jean-Paul G. Vonsattel
    • 1
    • 2
  • Michael L. Shelanski
    • 1
  1. 1.Columbia UniversityTaub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of PathologyNew YorkUSA
  2. 2.Columbia UniversityNew York Brain Bank, AD Research Center, Taub InstituteNew YorkUSA

Personalised recommendations