Journal of Neurocytology

, Volume 32, Issue 9, pp 1045–1053 | Cite as

Morphology of early developing oligodendrocytes in the ventrolateral spinal cord of the chicken

  • Emma S. Anderson


The oligodendroglial population includes Type I and II cells related to several thin axons, Type III cells with a few processes in relation to relatively thick axons and Type IV cells related to a single thick axon. This structural diversity of oligodendrocytes is accompanied by a molecular heterogeneity. In the chicken spinal cord, oligodendrocytes have begun to contact axons at embryonic day (E)10 and compact sheaths have appeared by E12. At the latter stage, most sheath-forming oligodendrocytes contact more than one axon. At E15, however, each sheath-forming cell seems to have developed a Schwann cell-like anatomy, being related to a single axon. Based on these findings, the present study examines more thoroughly the anatomy of early developing oligodendrocytes in the chicken spinal cord. Examination of slices immunostained with antibodies against the oligodendroglial marker O4 showed that a few positive cells are present at E6, after which the occurrence increases with age. At E12 most immunostained cells have two or more processes. At E15 however, dye-injected oligodendrocytes have developed a Type IV structure. Between E12 and E15, mean sheath length increases about 4×, from 50 μm to over 200 μm, while the length of the spinal cord increases 36% only. This indicates that early oligodendrocytes in chicken white matter develop a Type IV anatomy between E12 and E15 through an elimination of sheaths.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON, E. S., BJARTMAR, C., ERIKSSON, C., WESTERMARK, G. & HILDEBRAND, C. (2000a) Developing chicken oligodendrocytes express the type IV oligodendrocyte marker T4-O in situ, but not in vitro. Neuroscience Letters 284, 21–24.Google Scholar
  2. ANDERSON, E. S., BJARTMAR, C. & HILDEBRAND, C. (2000b) Myelination of prospective large fibres in chicken ventral funiculus. Journal of Neurocytology 29, 755–764.Google Scholar
  3. ANDERSON, E. S., BJARTMAR, C., WESTERMARK, G. & HILDEBRAND, C. (1999) Molecular heterogeneity of oligodendrocytes in chicken white matter. Glia 27, 15–21.Google Scholar
  4. BELLAIRS, R. & OSMOND, M. (1998) The Atlas of Chick Development. San Diego: Academic Press.Google Scholar
  5. BENSTED, J. P. M., DOBBING, J., MORGAN, R. S., REID, R. T. W. & PAYLING WRIGHT, G. (1957) Neuroglial development and myelination in the spinal cord of the chick embryo. Journal of Embryology and Experimental Morphology 5, 428–437.Google Scholar
  6. BERRY, M., IBRAHIM, M., CARLILE, J., RUGE, F., DUNCAN, A. & BUTT, A. M. (1995) Axon-glial relationships in the anterior medullary velum of the adult rat. Journal of Neurocytology 24, 965–983.Google Scholar
  7. BJARTMAR, C. (1998) Morphological heterogeneity of cultured spinal and cerebral rat oligodendrocytes. Neuroscience Letters 247, 91–94.Google Scholar
  8. BJARTMAR, C., HILDEBRAND, C. & LOINDER, K. (1994) Morphological heterogeneity of rat oligodendrocytes: Electron microscopic studies on serial sections. Glia 11, 235–244.Google Scholar
  9. BLAKEMORE, W. F. (1981) Observations on myelination and remyelination in the central nervous system. In Development in the Nervous System (edited by GARROD, D. R. & FELDMAN, J. D.) pp. 289–308. Cambridge: University Press.Google Scholar
  10. BUTT, A. M., COLQUHOUN, K. & BERRY, M. (1994a) Confocal imaging of glial cells in the intact rat optic nerve. Glia 10, 315–322.Google Scholar
  11. BUTT, A. M., COLQUHOUN, K., TUTTON, M. & BERRY, M. (1994b) Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. Journal of Neurocytology 23, 469–485.Google Scholar
  12. BUTT, A. M., IBRAHIM, M. & BERRY, M. (1998a) Axonmyelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum. Journal of Neurocytology 27, 259–269.Google Scholar
  13. BUTT, A. M., IBRAHIM, M., GREGSON, N. & BERRY, M. (1998b) Differential expression of the L-and S-isoforms of myelin associated glycoprotein (MAG) in oligodendrocyte unit phenotypes in the adult rat anterior medullary velum. Journal of Neurocytology 27, 271–280.Google Scholar
  14. BUTT, A. M., IBRAHIM, M., RUGE, F. M. & BERRY, M. (1995) Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip. Glia 14, 185–197.Google Scholar
  15. DEL RIO-HORTEGA, P. (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglia. Memorias de la Real Sociedad Espanóla de Historia Natural 14, 40–122.Google Scholar
  16. DU LAC, S. & LISBERGER, S. G. (1995) Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. Journal of Comparative Physiology 176, 641–651.Google Scholar
  17. DUNCAN, I. D., LUNN, K. F., HOLMGREN, B., URBAHOLMGREN, R. & BRIGNOLO-HOLMES, L. (1992) The taiep rat: A myelin mutant with an associated oligodendrocyte microtubular defect. Journal of Neurocytology 21, 870–884.Google Scholar
  18. FANARRAGA, M. L., GRIFFITHS, I. R., ZHAO, M. & DUNCAN, I. D. (1998) Oligodendrocytes are not inherently programmed to myelinate a specific siza of axon. Journal of Comparative Neurology 399, 94–100.Google Scholar
  19. HILDEBRAND, C. (1972) Evidence for a correlation between myelin period and number of myelin lamellae in fibres of the feline spinal cord white matter. Journal of Neurocytology 1, 223–232.Google Scholar
  20. HILDEBRAND, C. & HAHN, R. (1978) Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species. Journal of the Neurological Sciences 38, 421–434.Google Scholar
  21. HILDEBRAND, C. & MÑLLER, H. (1974) Low-angle X-ray diffraction studies on the period of central myein sheaths during preparation for electron microscopy, a comparison between different anatomical areas. Neurobiology 4, 71–81.Google Scholar
  22. HILDEBRAND, C., LOELIGER, S., BJARTMAR, C. & KARLSSON, M. (1996) Sheath lengths of large motor axons in the ventral root L5 of neonatal and adult rats. Neuroscience Letters 202, 173–176.Google Scholar
  23. LUNN, K. F., CLAYTON, M. K. & DUNCAN, I. D. (1997) Temporal progression of the myelination defect in the taiep rat. Journal of Neurocytology 26, 267–281.Google Scholar
  24. MILLER, R. H. (1996) Oligodendrocyte origins. Trends of Neurosciences 19, 92–96.Google Scholar
  25. MILLER, R. H. (2002) Regulation of oligodendrcyte development in the vertebrate CNS. Progress in Neurobiology 67, 451–467.Google Scholar
  26. MILLER, R. H., PAYNE, J., MILNER, L., ZHANG, H. & ORENTAS, D. M. (1997) Spinal cord oligodendrocytes develop from a limited number of migratory, highly proliferative precursors. Journal of Neuroscience Research 50, 157–168.Google Scholar
  27. MURRAY, J. A. & BLAKEMORE, W. F. (1980) The relationship between internodal length and fibre diameter in the spinal cord of the cat. Journal of the Neurological Sciences 45, 29–41.Google Scholar
  28. ONO, K., BANSAL, R., PAYNE, J., RUTISHAUSER, U. & MILLER, R. H. (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121, 1743–1754.Google Scholar
  29. ONO, K., FUJISAWA, H., HIRANO, S., NORITA, M., TSUMORI, T. & TASUI, Y. (1997) Early development of the oligodendrocyte in the embryonic chick metencephalon. Journal of Neuroscience Research 48, 212–225.Google Scholar
  30. ONO, K., TSUMORI, T., KISHI, T., YOKOTA, S. & YASUI, Y. (1998) Developmental appearance of oligodendrocytes in the embryonic chick retina. Journal of Comparative Neurology 398, 309–322.Google Scholar
  31. PFEIFFER, S. E., WARRINGTON, A. E. & BANSAL R. (1993) The oligodendrocyte and its many cellular processes. Trends in Cell Biology 3, 191–197.Google Scholar
  32. REMAHL, S. & HILDEBRAND, C. (1990) Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit. Journal of Neurocytology 19, 313–328.Google Scholar
  33. SOMMER, I. & SCHACHNER, M. (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system. Developmental Biology 83, 311–327.Google Scholar
  34. SONG, J., GOETZ, B. D., KIRVELL, S. L., BUTT, A. M. & DUNCAN, I. D. (2001) Selective myelin defects in the anterior medullary velum of the taiep mutant rat. Glia 33, 1–11.Google Scholar
  35. SONG, J., O'CONNOR, L. T., YU, W., BAAS, P. W. & DUNCAN, I. D. (1999) Microtubule alterations in cultured taiep rat oligodendrocytes lead to deficits in myelin membrane formation. Journal of Neurocytology 28, 671–683.Google Scholar
  36. STENSAAS, L. J. & STENSAAS, S. S. (1968) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy. Zeitschrift für Zellforschung 86, 184–213.Google Scholar
  37. SUZUKI, K. & SUZUKI, Y. (1983) Galactosylceramide lipidosis: Globoid cell leukodystrophy (Krabbe's disease). In The Metabolic Basis of Inherited Disease (edited by STANBURY, J. B., WYNGAARDEN, J. B., FREDRICKSON, D. S., GOLDSTEIN, J. L. & BROWN, M. S.) pp. 857–880. New York: McGraw-Hill Book Company.Google Scholar
  38. VOYVODIC, J. T. (1989) Target size regulates calibre and myelination of sympathetic axons. Nature 342, 430– 433.Google Scholar
  39. WERUAGA-PRIETO, E., EGGLI, P. & CELIO, M. R. (1996) Topographic variations in rat brain oligodendrocyte morphology elucidated by injection of Lucifer yellow in fixed tissue slices. Journal of Neurocytology 25, 19–31.Google Scholar
  40. WOOD, P. & BUNGE, R. P. (1984) The biology of the oligodendrocyte. In Oligodendroglia (edited by NORTON, W. T.) pp. 1–46. New York & London: Plenum Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Emma S. Anderson
    • 1
  1. 1.Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health SciencesUniversity of LinköpingLinköpingSweden

Personalised recommendations