Journal of Neurocytology

, Volume 32, Issue 5–8, pp 803–816

Phosphorylation reactions in activity-dependent synapse modification at the neuromuscular junction during development

  • Phillip G. Nelson
  • Maria A. Lanuza
  • Min Jia
  • Min-Xu Li
  • Josep Tomas


We have studied developmental activity-dependent synapse diminution in both an in vitro tissue culture chamber system and at the intact rodent neuromuscular junction (nmj). In both types of preparations, pre- and postsynaptic alterations in synapse structure and function are produced by manipulations of thrombin (Thr) and protein kinase C (PKC) activity. An opposing postsynaptic effect of PKC and protein kinase A (PKA) action on the acetycholine receptor (AChR) can be shown in vitro with PKA stabilizing and PKC destabilizing the nmj synapses. In vivo studies of normal junctional maturation show that changes in axonal inputs and postsynaptic receptor cluster morphology occur, to a substantial degree, independently of one another. Presynaptic actions of PKA are involved in the activity dependent synapse modulation that can be demonstrated in vitro. Late in the elimination process, (>12 days in vivo) the process becomes independent of PKC, implying that diverse, redundant mechanisms are involved in this important developmental process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANGAUT-PETIT, D., MOLGO, J., CONNOLD, A. L. & FAILLE, L. (1987) The Levator auris longus muscle of the mouse:Aconvenient preparation for studies of shortand long term presynaptic effects of drugs or toxins. Neuroscience Lett. 82, 8–88.Google Scholar
  2. BALICE-GORDON, R. J. & LICHTMAN, J. W. (1994) Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 51–524.PubMedGoogle Scholar
  3. BOURGEOIS, J. & RAKIC, P. (1993) Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13, 280–2820.PubMedGoogle Scholar
  4. BYRNE, J. H. & KANDEL, E. R. (1996) Presynaptic facilitation revisited: State and time dependence. J. Neurosci. 16, 42–435.PubMedGoogle Scholar
  5. CAMBRAY-DEAKIN, M. A., ADU, J. B. & BURGOYNE, R. D. (1990) Neuritogenesis in cerebellar granule cells in vitro, a role for protein kinase C. Dev. Brain Res. 53, 4–46.Google Scholar
  6. CONNOLD, A. L., EVERS, J. V. & VRBOVA, G. (1986) Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle. Brain Res. 393, 9–107.PubMedGoogle Scholar
  7. COUGHLIN, S. R. (2000) Thrombin signalling and proteaseactivated receptors. Nature 407, 25–264.PubMedGoogle Scholar
  8. DAI, Z. & PENG, H. B. (1998) A role of tyrosinepPhosphatase in acetylcholine receptor cluster dispersal and formation. J. Cell. Biol. 141, 161–1624.PubMedGoogle Scholar
  9. FIELDS, R. D. & NELSON, P. G. (1992) Activity-dependent development of the nervous system. Int. Rev. Neurobiol. 34, 13–214.PubMedGoogle Scholar
  10. GIRARD, P. R. & KUO, J. F. (1990) Protein kinase C and its 80-kilodalton substrate protein in neuroblastoma cell neurite outgrowth. J. Neurochem. 54, 30–306.PubMedGoogle Scholar
  11. HUGANIR, R. L. & GREENGARD, P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5, 55–567.PubMedGoogle Scholar
  12. JIA, M., LI, M. X., DUNLAP, V. & NELSON, P. G. (1999) The thrombin receptor mediates functional activitydependent neuromuscular synapse reduction via protein kinase C activation in vitro. J. Neurobiol. 38, 36–381.PubMedGoogle Scholar
  13. KANO, M., HASHIMOTO, K., CHEN, C., ABELIOVICH, A., AIBA, A., KURIHARA, H., WATANABE, M., INOUE, Y. & TONEGAWA. S. (1995) Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell 83, 122–1231.PubMedGoogle Scholar
  14. KATZ, B. (1996) Neural transmitter release: From quantal secretion to exocytosis and beyond. The Fenn Lecture. J. Neurocytol. 25, 67–686.Google Scholar
  15. KIM, S., BONDEVA, T. & NELSON, P. G. (2002) Activation of protein kinase C isozymes in primary mouse myotubes by carbachol. Brain Res. Dev. Brain Res. 137, 1–21.PubMedGoogle Scholar
  16. LAI, W. S. & EL-FAKAHANY, E. E. (1988) Regulation of [3H] phorbol-12,13-dibutyrate binding sites in mouse neuroblastoma cells: Simultaneous down-regulation by phorbol esters and desensitization of their inhibition of muscarinic receptor function. J. Pharmacol. Exp. Ther. 244, 4–50.PubMedGoogle Scholar
  17. LANUZA, M. A., GARCIA, N., SANTAFE, M., NELSON, P. G., FENOLL-BRUNET, M. R. & TOMAS, J. (2001) Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. J. Neurosci. Res. 63, 33–340.PubMedGoogle Scholar
  18. LANUZA, M. A., GARCIA, N., GONZÀLEZ, C. M., SANTAFÉ, M., NELSON, P. G. & TOMÀS, J. (2003) Role and expression of thrombin receptor PAR-1 in muscle cells and neuromuscular junctions during the synapse elimination period in the neonatal rat. J. Neurosci. Res. 73, 1–21.PubMedGoogle Scholar
  19. LANUZA, M. A., LI, M.-X., JIA, M., KIM, S., DAVENPORT, R., DUNLAP, V. & NELSON, P. G. (2000) Protein kinase C mediated changes in synaptic efficacy at the neuromuscular junction in vitro: The role of postsynaptic acetylcholine receptors. J. Neurosci. Res. 61, 61–625.PubMedGoogle Scholar
  20. LANUZA, M. A., GARCIA, N., SANTAFE, M., GONZALEZ, C. M., ALONSO, I., NELSON, P. G. & TOMAS, J. (2002) Pre-and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. J. Neurosci. Res. 67, 60–617.PubMedGoogle Scholar
  21. LI, M.-X., JIA, M., JIANG, H., DUNLAP, V. & NELSON, P. G. (2001) Opposing actions of protein kinase A and C mediate Hebbian synaptic plasticity. Nature Neuroscience 4, 87–872.PubMedGoogle Scholar
  22. LI, M.-X., JIA, M., YANG, L.-X., DUNLAP, V. & NELSON, P. G. (2002) Pre-and postsynaptic mechanisms in Hebbian activity-dependent synapse modification. J. Neurobiol. 52, 24–250.PubMedGoogle Scholar
  23. LIU, Y., FIELDS, R. D., FESTOFF, B. W. & NELSON, P. G. (1994) Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proc. Natl. Acad. Sci. USA 91, 1030–10304.PubMedGoogle Scholar
  24. LOHOF, A. M., DELHAYE-BOUCHAUD, N. & MARIANI, J. (1996) Synapse elimination in the entral nervous system: Functional significance and cellular mechanisms. Rev. Neurosci. 7, 8–101.PubMedGoogle Scholar
  25. MARIANI, J. (1983) Elimination of synapses during the development of the central nervous system. Prog. Brain Res. 58, 38–392.PubMedGoogle Scholar
  26. MATTHIES, H. J., PALFREY, H. C., HIRNING, L. D. & MILLER, R. J. (1987) Down regulation of protein kinase C in neuronal cells: Effects on neurotransmitter release. J. Neurosci. 7, 119–1206.PubMedGoogle Scholar
  27. MILES, K. & HUGANIR, R. L. (1988) Regulation of nicotinic acetylcholine receptors by protein phosphorylation. Mol. Neurobiol. 2, 9–124.PubMedGoogle Scholar
  28. MILES, K., GREENGARD, P., HUGANIR, R. L. (1989) Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2, 151–1524.PubMedGoogle Scholar
  29. MOHAMED, A. S., RIVAS-PLATA, K. A., KRAAS, J. R., SALEH, S. M. & SWOPE, S. L. (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J. Neurosci. 21, 380–3818.PubMedGoogle Scholar
  30. NIMNUAL, A. S., CHANG, W., CHANG, N. S., ROSS, A. F., GELMAN, M. S. & PRIVES, J. M. (1998) Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells. Biochemistry 37, 1482–14832.PubMedGoogle Scholar
  31. PERKINS, G. A., WANG, L., HUANG, L. J., HUMPHRIES, K., YAO, V. J., MARTONE, M., DEERINCK, T. J., BARRACLOUGH, D. M., VIOLIN, J. D., SMITH, D., NEWTON, A., SCOTT, J. D., TAYLOR, S. S. & ELLISMAN, M. H. (2001) PKA, PKC, and AKAP localization in and around the neuromuscular junction. BMC Neurosci. 2, 17.PubMedGoogle Scholar
  32. REDFERN, P. A. (1970) Neuromuscular transmission in new-born rats. J. Physiol. (Lond.) 209, 70–709.Google Scholar
  33. REIST, N. E., WERLE, M. J. & MCMAHAN, U. J. (1992) Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8, 86–868.PubMedGoogle Scholar
  34. ROCHE, K. W., TINGLEY, W. G. & HUGANIR, R. L. (1994) Glutamate receptor phosphorylation and synaptic plasticity. Curr. Opin. Neurobiol. 4, 38–388.PubMedGoogle Scholar
  35. SLATER, C. R. (1982) Postnatal maturation of nerve-muscle juncctions in hindlimb muscles of the mouse. Dev. Biol. 94, 1–22.PubMedGoogle Scholar
  36. SWOPE, S. L., MOSS, S. J., BLACKSTONE, C. D. & HUGANIR, R. L. (1992) Phosphorylation of ligandgated ion channels: A possible mode of synaptic plasticity. FASEB J. 6, 251–2523.PubMedGoogle Scholar
  37. THOMPSON, W. J. (1985) Activity and synapse elimination at the neuromuscular junction. Cell Mol. Neurobiol. 5, 16–182.PubMedGoogle Scholar
  38. VRBOVA, G., LOWRIE, M. B. & EVERS, J. (1988) Reorganization of synaptic inputs to developing skeletal muscle fibres. Ciba Found Symp. 138, 13–151.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Phillip G. Nelson
    • 1
  • Maria A. Lanuza
    • 2
  • Min Jia
    • 1
  • Min-Xu Li
    • 1
  • Josep Tomas
    • 2
  1. 1.Section on Neurobiology, Laboratory of Developmental NeurobiologyNational Institute of Child Health and Human Development, NIHBethesdaUSA
  2. 2.Unitat d'Histologia i Neurobiologia (UHN) Facultat de Medicina i Ciencies de la SalutUniversitat Rovira i VirgiliReusSpain

Personalised recommendations