Journal of Neurocytology

, Volume 32, Issue 5–8, pp 591–602 | Cite as

The role of nitric oxide signaling in the formation of the neuromuscular junction


The formation of the vertebrate neuromuscular junction (NMJ) depends on the action of neural agrin on the muscle cell. The requirement for agrin and its receptor, muscle-specific kinase (MuSK), has been well established over the past 20 years. However, the signaling mechanisms through which agrin and MuSK cause synaptic differentiation are not well understood. New evidence from studies of muscle cells in culture and in embryos indicates that nitric oxide (NO) is an effector of agrin-induced postsynaptic differentiation at the NMJ. Cyclic GMP (cGMP) production by guanylate cyclase appears to be an important downstream step in this pathway. Nitric oxide and cGMP regulate the activity of several kinases, some of which may influence interaction of dystrophin and utrophin with the actin cytoskeleton to mediate or modulate postsynaptic differentiation in muscle cells. These signaling molecules could also play a role in retrograde signaling to influence differentiation of presynaptic nerve terminals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAM, C. L. & COURTNEIDGE, S. A. (2000) Src family tyrosine kinases and growth factor signaling. Experimental Cell Research 254, –13.PubMedGoogle Scholar
  2. ADAMS, M. E., KRAMARCY, N., KRALL, S. P., ROSSI, S. G., ROTUNDO, R. L., SEALOCK, R. & FROEHNER, S. C. (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. Journal of Cell Biology 150, 138–1398.PubMedGoogle Scholar
  3. AKHAND, A. A., PU, M., SENGA, T., KATO, M., SUZUKI, H., MIYATA, T., HAMAGUCHI, M. & NAKASHIMA, I. (1999) Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. Journal of Biological Chemistry 274, 2582–25826.PubMedGoogle Scholar
  4. ANDERSON, M. J. & COHEN, M. W. (1977) Nerve induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. Journal of Physiology (London) 268, 75–773.Google Scholar
  5. BISHOP, A. L. & HALL, A. (2000) Rho GTPases and their effector proteins. Biochemical Journal 348, 24–255.PubMedGoogle Scholar
  6. BLOTTNER, D. & LÑCK, G. (1998) Nitric oxide synthase (NOS) in mouse skeletal muscle development and differentiated myoblasts. Cell and Tissue Research 292, 29–302.PubMedGoogle Scholar
  7. BLOTTNER, D. & LÑCK, G. (2001) Just in time and place: NOS/NO system assembly in neuromuscular junction formation. Microscopy Research and Technique 55, 17–180.PubMedGoogle Scholar
  8. BORGES, L. S. & FERNS, M. (2001) Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. Journal of Cell Biology 153, –11.PubMedGoogle Scholar
  9. BORGES, L. S., LEE, Y. & FERNS, M. (2002) Dual role for calcium in agrin signaling and acetylcholine receptor clustering. Journal of Neurobiology 50, 6–79.Google Scholar
  10. BURDEN, S. J. (2002) Building the vertebrate neuromuscular synapse. Journal of Neurobiology 53, 50–511.PubMedGoogle Scholar
  11. BURNETT, A. L., NELSON, R. J., CALVIN, D. C., LIU, J. X., DEMAS, G. E., KLEIN, S. L., KRIEGSFELD, L. J., DAWSON, V. L., DAWSON, T. M. & SNYDER, S. H. (1996) Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Molecular Medicine 2, 28–296.PubMedGoogle Scholar
  12. CARTAUD, A., COUTANT, S., PETRUCCI, T. C. & CARTAUD, J. (1998) Evidence for in situ and in vitro interaction between beta-dystroglycan and the subsynaptic 43 K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. Journal of Biological Chemistry 273, 1132–11326.PubMedGoogle Scholar
  13. CHAO, D. S., SILVAGNO, F., XIA, H., CORNWELL, T. L., LINCOLN, T. M. & BREDT, D. S. (1997) Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate. Neuroscience 76, 66–672.PubMedGoogle Scholar
  14. COHEN, I., RIMER, M., LOMO, T. & MCMAHAN, U. J. (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Molecular and Cellular Neuroscience 9, 23–253.PubMedGoogle Scholar
  15. COTE, P. D., MOUKHLES, H., LINDENBAUM, M. & CARBONETTO, S. (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genetics 23, 33–342.PubMedGoogle Scholar
  16. DAI, Z., LUO, X., XIE, H. & PENG, H. B. (2000) The actin-driven movement and formation of acetylcholine receptor clusters. Journal of Cell Biology 150, 132–1334.PubMedGoogle Scholar
  17. DECHIARA, T. M., BOWEN, D. C., VALENZUELA, D. M., SIMMONS, M. V., POUEYMIROU, W. T., THOMAS, S., KINETZ, E., COMPTON, D. L., ROJAS, E., PARK, J. S., SMITH, C., DISTEFANO, P. S., GLASS, D. J., BURDEN, S. J. & YANCOPOULOS, G. D. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 50–512.PubMedGoogle Scholar
  18. DESCARRIES, L. M., CAI, S. & ROBATAILLE, R. (1998) Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. Journal of Neurocytology 27, 82–840.PubMedGoogle Scholar
  19. ELIASSON, M. J., BLACKSHAW, S., SCHELL, M. J. & SNYDER, S. H. (1997) Neuronal nitric oxide synthase alternatively spliced forms: Prominent functional localizations in the brain. Proceedings of the National Academy of Sciences USA 94, 339–3401.Google Scholar
  20. FINN, A. J., PENDERGAST, A. M. & FENG, G. (2003) Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nature Neuroscience 6, 71–723.PubMedGoogle Scholar
  21. FRANK, E. & FISCHBACH, G. D. (1979) Early events in neuromuscular junction formation in vitro: Induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. Journal of Cell Biology 83, 14–158.PubMedGoogle Scholar
  22. GAUTAM, M., NOAKES, P. G., MOSCOSO, L., RUPP, F., SCHELLER, R. H., MERLIE, J. P. & SANES, J.R. (1996) Defective neuromuscular synaptogenesis in agrin deficient mutant mice. Cell 85, 52–535.PubMedGoogle Scholar
  23. GODFREY, E. W., ROE, J. & HEATHCOTE, R. D. (1999) Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction. Developmental Biology 205, 2– 32.PubMedGoogle Scholar
  24. GODFREY, E. W., ROE, J. & HEATHCOTE, R. D. (2000) Agrin fragments differentially induce ectopic aggregation of acetylcholine receptors in myotomal muscles of Xenopus embryos. Journal of Neurobiology 44, 43– 445.PubMedGoogle Scholar
  25. GOPALAKRISHNA, R., CHEN, Z. H. & GUNDIMEDA, U. (1993) Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. Journal of Biological Chemistry 268, 2718–27185.PubMedGoogle Scholar
  26. GRADY, R. M., ZHOU, H., CUNNINGHAM, J. M., HENRY, M. D., CAMPBELL, K. P. & SANES, J. R. (2000) Maturation and maintenance of the neuromuscular synapse: Genetic evidence for roles of the dystrophinglycoprotein complex. Neuron 25, 27–293.PubMedGoogle Scholar
  27. HAWKINS, R. D., SON, H. & ARANCIO, O. (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Progress in Brain Research 118, 15–172.PubMedGoogle Scholar
  28. HOFFMANN, F., AMMENDOLA, A. & SCHLOSSMANN, J. (2000) Rising behind NO: cGMP-dependent protein kinases. Journal of Cell Science 113, 167–1676.PubMedGoogle Scholar
  29. HUANG, P. L., DAWSON, T. M., BREDT, D. S., SNYDER, S. H. & FISHMAN, M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 127–1286.PubMedGoogle Scholar
  30. JONES, G., MEIER, T., LICHTENSTEINER, M., WITZEMANN, V., SAKMANN, B. & BRENNER, H. R. (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proceedings of the National Academy of Sciences USA 94, 265–2659.Google Scholar
  31. JONES, M. A. & WERLE, M. J. (2000a) Nitric oxide is a downstream mediator of agrin-induced acetylcholine receptor aggregation. Molecular and Cellular Neuroscience 16, 64–660.PubMedGoogle Scholar
  32. JONES, M. A. & WERLE, M. J. (2000b) Nitric oxide mediates acetylcholine receptor aggregation through increasing intracellular cyclic GMP levels. Society for Neuroscience Abstracts 26, 1089.Google Scholar
  33. KAHL, J. & CAMPANELLI, J. T. (2003) A role for the juxtamembrane domain of beta-dystroglycan in agrininduced acetylcholine receptor clustering. Journal of Neuroscience 23, 39–402.PubMedGoogle Scholar
  34. KRAMARCY, N. R. & SEALOCK, R. (2000) Syntrophin isoforms at the neuromuscular junction: Developmental time course and differential localization. Molecular and Cellular Neuroscience 15, 26–274.PubMedGoogle Scholar
  35. KUNCEWICZ, T., BALAKRISHNAN, P., SNUGGS, M. B. & KONE, B. C. (2001) Specific association of nitric oxide synthase-2 with Rac isoforms in activated murine macrophages. American Journal of Physiology, Renal Physiology 276, F61–F621.Google Scholar
  36. KIM, D. K., HONG, E. K., LEE, K. H., KIM, J. I. & SONG, W. K. (1999) Molecular cloning and expression of nitric oxide synthase gene in chick embryonic muscle cells. Cell Biochemistry and Function 17, 26–270.PubMedGoogle Scholar
  37. KUSNER, L. L. & KAMINSKI, H. J. (1996) Nitric oxide synthase is concentrated at the skeletal muscle endplate. Brain Research 730, 23–242.PubMedGoogle Scholar
  38. LANUZA, M. A., LI, M.-X., JIA, M., KIM, S., DAVENPORT, R., DUNLAP, V. & NELSON, P. G. (2000) Protein kinase C-mediated changes in synaptic efficacy at the neuromuscular junction in vitro: The role of postsynaptic acetylcholine receptors. Journal of Neuroscience Research 61, 61–625.PubMedGoogle Scholar
  39. LI, M.-X., JIA, M., YANG, L.-X., DUNLAP, V. & NELSON, P. G. (2002) Pre-and posynaptic mechanisms in Hebbian activity-dependent synapse modification. Journal of Neurobiology 52, 24–250.PubMedGoogle Scholar
  40. LIN, W., BURGESS, R. W., DOMINGUEZ, B., PFAFF, S. L., SANES, J. R. & LEE, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 105–1064.PubMedGoogle Scholar
  41. LÑCK, G., HOCH, W., HOPF, C. & BLOTTNER, D. (2000) Nitric oxide synthase (NOS-1) coclustered with agrininduced AChR-specializations on cultured skeletal myotubes. Molecular and Cellular Neuroscience 16, 26–281.PubMedGoogle Scholar
  42. LUO, Z. G., WANG, Q., ZHOU, J. Z., WANG, J., LUO, Z., LIU, M., HE, X., WYNSHAW-BORIS, A., XIONG, W. C., LU, B. & MEI, L. (2002) Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35, 48–505.PubMedGoogle Scholar
  43. LUO, Z., WANG, Q., XIONG, W. C. & MEI, L. (2003) Signaling complexes for AChR clustering. Journal of Neurocytology. 32, 69–708.PubMedGoogle Scholar
  44. MEGEATH, L. J. & FALLON, J. R. (1998) Intracellular calcium regulates agrin-induced acetylcholine receptor clustering. Journal of Neuroscience 18, 67–678.PubMedGoogle Scholar
  45. MEIER, T., HAUSER, D. M., CHIQUET, M., LANDMANN, L., RUEGG, M. A. & BRENNER, H. R. (1997) Neural agrin induces ectopic posynaptic specializations in innervated muscle fibers. Journal of Neuroscience 17, 635–6544.Google Scholar
  46. MILES, K. & WAGNER, M. (2003) Overexpression of nPKC theta is inhibitory for agrin-induced nicotinic acetylcholine receptor clustering in C2C12 myotubes. Journal of Neuroscience Research 71, 18–195.PubMedGoogle Scholar
  47. MOHAMED, A., RIVAS-PLATAS, K. A., KRASS, J. R., SALEH, S. M. & SWOPE, S. L. (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. Journal of Neuroscience 21, 380–3818.PubMedGoogle Scholar
  48. MOHAMED, A. & SWOPE, S. L. (1999) Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src-class protein tyrosine kinases: Activation by rapsyn. Journal of Biological Chemistry 274, 2052–20539.PubMedGoogle Scholar
  49. MORANSARD, M., BORGES, L. S., WILLMANN, R., MARANGI, P. A., BRENNER, H. R., FERNS, M. J. & FUHRER, C. (2003) Agrin regulates rapsyn interaction with surface AChRs which underlies cytoskeletal anchoring and clustering. Journal of Biological Chemistry 278, 735–7359.PubMedGoogle Scholar
  50. NATHAN, C. & XIE, Q. W. (1994) Nitric oxide synthases: Roles, tolls, and controls. Cell 78, 91–918.PubMedGoogle Scholar
  51. NOAKES, P. G., GAUTAM, M., MUDD, J., SANES, J. R. & MERLIE, J. P. (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374, 25–262.PubMedGoogle Scholar
  52. PENG, H. B., YANG, J. F., DAI, Z., LEE, C. W., HUNG, H. W., FENG, Z. H. & KO, C. P. (2003) Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. Journal of Neuroscience 23, 505–5060.PubMedGoogle Scholar
  53. PENZES, P., BEESER, A., CHERNOFF, J., SCHILLER, M. R., EIPPER, B. A., MAINS, R. E. & HUGANIR, R. L. (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 26–274.PubMedGoogle Scholar
  54. QU, Z. & HUGANIR, R. L. (1994) Comparison of innervation and agrin-induced tyrosine phosphorylation of the nicotinic acetylcholine receptor. Journal of Neuroscience 14, 683–6841.PubMedGoogle Scholar
  55. RATOVITSKI, E. A., ALAM, M. R., QUICK, R. A., MCMILLAN, A., BAO, C., KOZLOVSKY, C., HAND, T. A., JOHNSON, R. C., MAINS, R. E., EIPPER, B. A. & LOWENSTEIN, C. J. (1999a) Kalirin inhibiton of inducible nitric-oxide synthase. Journal of Biological Chemistry 274, 99–999.PubMedGoogle Scholar
  56. RATOVITSKI, E. A., BAI, C., QUICK, R. A., MCMILLAN, A., KOZLOVSKY, C. & LOWENSTEIN, C. J. (1999b) An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. Journal of Biological Chemistry 274, 3025–30257.PubMedGoogle Scholar
  57. RIBERA, J., MARSAL, J., CASANOVAS, A., HUKKANEN, M., TARABAL, O. & ESQUERDA, J. E. (1998) Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: Its role as regulator of acetylcholine release. Journal of Neuroscience Research 51, 9–102.PubMedGoogle Scholar
  58. RIMER, M., MATHIESON, I., LOMO, T. & MCMAHAN, U. J. (1997) Gamma-AChR/epsilon-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Molecular and Cellular Neuroscience 9, 25–263.PubMedGoogle Scholar
  59. SANDER, M., CHAVOSHAN, B., HARRIS, S. A., IANNACCONE, S. T., STULL, J. T., THOMAS, G. D. & VICTOR, R. G. (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences USA 97, 1381–13823.Google Scholar
  60. SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 38–442.PubMedGoogle Scholar
  61. SANES, J. R. & LICHTMAN, J. W. (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Reviews Neuroscience 2, 79–805.PubMedGoogle Scholar
  62. SCHOSER, B. G. H. & BEHRENDS, S. (2001) Soluble guanylyl cyclase is localized at the neuromuscular junction in human skeletal muscle. NeuroReport 12, 97–981.PubMedGoogle Scholar
  63. SCHWARTE, R. C. & GODFREY, E. W. (2001) Overexpression of nitric oxide synthase increases acetylcholine receptor aggregation at embryonic neuromuscular junctions. Society for Neuroscience Abstracts 27, no. 694.9.Google Scholar
  64. SENTER, L., CEOLDO, S., MEZNARIC PETRUSA, M. & SALVIATI, G. (1995) Phosphorylation of dystrophin: Effects on actin binding. Biochemical and Biophysical Research Communications 206, 5–63.PubMedGoogle Scholar
  65. SMITH, C. L., MITTAUD, P., PRESCOTT, E. D., FUHRER, C. & BURDEN, S. J. (2001) Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. Journal of Neuroscience 21, 315–3160.PubMedGoogle Scholar
  66. SON, H., HAWKINS, R. D., MARTIN, K., KIEBLER, M., HUANG, P. L., FISHMAN, M. C. & KANDEL, E. R. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87, 101–1023.PubMedGoogle Scholar
  67. STAMLER, J. S. & MEISSNER, G. (2001) Physiology of nitric oxide in skeletal muscle. Physiological Reviews 81, 20–237.PubMedGoogle Scholar
  68. THOMAS, S. & ROBITAILLE, R. (2001) Differential frequency-dependent regulation of transmitter release by endogenous nitric oxide at the amphibian neuromuscular synapse. Journal of Neuroscience 21, 108–1095.PubMedGoogle Scholar
  69. WALLACE, B. G. (1988) Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. Journal of Cell Biology 107, 26–278.PubMedGoogle Scholar
  70. WANG, C.-Y., YANG, F., HE, X.-P., JE, H.-S., ZHOU, J.-Z., ECKERMANN, K., KAWAMURA, D., FENG, L., SHEN, L. & LU, B. (2002) Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. Journal of Biological Chemistry 277, 1061–10625.PubMedGoogle Scholar
  71. WANG, T., XIE, Z. & LU, B. (1995) Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374, 26–266.PubMedGoogle Scholar
  72. WANG, Y., NEWTON, D. C., ROBB, G. B., KAU, C.-L, MILLER, T. L., CHEUNG, A. H., HALL, A. V., VANDAMME, S., WILCOX, J. N. & MARSDEN, P. A. (1999). RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proceedings of the National Academy of Sciences USA 96, 1215–12155.Google Scholar
  73. WEHLING, M., SPENCER, M. J. & TIDBALL, J. G. (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. Journal of Cell Biology 155, 12–131.PubMedGoogle Scholar
  74. WESTON, C., YEE, B., HOD, E. & PRIVES, J. (2000) Agrin induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. Journal of Cell Biology 150, 20–212.PubMedGoogle Scholar
  75. WESTON, C., GORDON, C., TERESSA, G., HOD, E., REN, X.-D. & PRIVES, J. (2003) Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells. Journal of Biological Chemistry 278, 645–6455.PubMedGoogle Scholar
  76. WILDEMANN, B. & BICKER, G. (1999) Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. Journal of Neurobiology 39, 33–346.PubMedGoogle Scholar
  77. WILLMANN, R. & FUHRER, C. (2002) Neuromuscular synaptogenesis: Clustering of acetylcholine receptors revisited. Cellular and Molecular Life Sciences 59, 129– 1316.PubMedGoogle Scholar
  78. YANG, C. C., ALVAREZ, R. B., ENGEL, W. K., HAUN, C. K. & ASKANAS, V. (1997) Immunolocalization of nitric oxide synthases at the postsynaptic domain ofhuman and rat neuromuscular junctions—light and electron microscopic studies. Experimental Neurology 148, 3–44.PubMedGoogle Scholar
  79. YANG, X., ARBER, S., WILLIAM, C., LI, L., TANABE, Y., JESSELL, T. M., BIRCHMEIER, C. & BURDEN, S. J. (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 39–410.PubMedGoogle Scholar
  80. YUEN, P. S., DOOLITTLE, L. K. & GARBERS, D. L. (1994) Dominant negative mutants of nitric oxide-sensitive guanylyl cyclase. Journal of Biological Chemistry 269, 79–793.PubMedGoogle Scholar
  81. ZHANG, L., WANG, J. M., TSENG, C. N., VIROONCHATAPAN, N., ROTHE, E., YAO, Y. & WANG, Z. Z. (2002) Agrin induces postsynaptic differentiation at the neuromuscular junction by antagonizing the Wnt/ ?-catenin pathway. Society for Neuroscience Abstracts 28, no. 234.12.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Pathology and AnatomyEastern Virginia Medical SchoolNorfolkUSA

Personalised recommendations