Advertisement

Neurochemical Research

, Volume 29, Issue 8, pp 1563–1570 | Cite as

The Effect of Citalopram on Gene Expression Profile of Alzheimer Lymphocytes

  • András PalotásEmail author
  • László G. Puskás
  • Klára Kitajka
  • Miklós Palotás
  • József Molnár
  • Magdolna Pákáski
  • Zoltán Janka
  • Botond Penke
  • János Kálmán
Article

Abstract

Antidepressants are widely used in the treatment of mood disorders associated with dementia, however little information is available on their effect at the molecular level. In certain neurodegenerative disorders, such as in Alzheimer's disease, lymphocytes have been used to assess mirror changes that thought to occur in the brain. Gene expression profiles of lymphocytes from Alzheimer patients have been shown to differ from that seen with controls. To address this issue in light of antidepressant treatment, we used lymphocytes derived from Alzheimer's disease patients and control individuals to assess the impact of the selective serotonine reuptake inhibitor citalopram on gene expression using a cDNA microarray representing 3200 distinct human genes. Sequences that are differentially regulated after treatment with citalopram were identified and categorized based on similarities in biological functions. This analysis revealed that the overexpression of genes in control and Alzheimer white blood cells by citalopram are implicated in cell survival. Apart from this, citalopram did not markedly alter genes involved in other molecular functions in control cells. In contrast, alteration of genes implicated in ionic currents, cell-adhesion, immune mechanism, and adrenergic functions, were also observed in Alzheimer lymphocytes. The expression of genes of Alzheimer lymphocytes by citalopram is modulated differently which may correlate with the pathology.

Alzheimer's disease antidepressant citalopram gene expression lymphocyte microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    Selkoe, D. J. The molecular pathology of Alzheimer's disease. 1991. Neuron 6:487–498.Google Scholar
  2. 2.
    Terry, R. D. Neuropathological changes in Alzheimer disease. 1994. Prog. Brain Res. 101:383–390.Google Scholar
  3. 3.
    Lyketsos, C. G., Steinberg, M., Tschantz, J., Norton, M., Steffens, D., and Breitner, J. C. S. 2000. Mental and behavioral disturbances in dementia: Findings from the Cache County Study on Memory in Aging. Am. J. Psychiatry 157:708–714.Google Scholar
  4. 4.
    Olin, J. T., Schneider, L. S., Katz, I. R., Meyers, B. S., Alexopoulos, G. S., Breitner, J. C., Bruce, M. L., Caine, E. D., Cummings, J. L., Devanand, D. P., Krishnan, K. R., Lyketsos, C. G., Lyness, J. M., Rabins, P. V., Reynolds, C. F. 3rd, Rovner, B. W., Steffens, D. C., Tariot, P. N., and Lebowitz, B. D. 2002. Provisional diagnostic criteria for depression of Alzheimer disease. Am. J. Geriatr. Psychiatry 10:125–128.Google Scholar
  5. 5.
    Duman, R. S., Heninger, G. R., and Nestler, E. I. 1997. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54:597–606.Google Scholar
  6. 6.
    Berger, B. Neurotransmitter anomalies in Alzheimer's disease. 1984. Rev. Neurol. 10:539–552.Google Scholar
  7. 7.
    Bowen, D. M., Allen, S. J., Benton, J. S., Goodhardt, M. J., Haan, E. A., Palmer, A. M., Sims, N. R., Smith, C. C., Spillane, J. A., Esiri, M. M., Neary, D., Snowdo, J. S., Wilcock, G. K., Davison, A. N. 1983. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. J. Neurochem. 41:266–272.Google Scholar
  8. 8.
    Palotás, M., Palotás, A., Puskás, L. G., Kitajka, K., Pákáski, M., Janka, Z., Molnár, J., Penke, B., and Kálmán, J. 2004. Gene expression profile analysis of the rat cortex following treatment with imipramine and citalopram. Int. J. Neuropsychopharm. (in press).Google Scholar
  9. 9.
    Palotás A., Kálmán, J., Laskay, G., Juhász, A., Janka, Z., and Penke, B. 2001. Comparative studies on [Ca2+]i-level of fibroblasts from Alzheimer patients and control individuals. Neurochem. Res. 26:817–820.Google Scholar
  10. 10.
    Zubenko, G. S., Cohen, B. M., Growdon, J., and Corkin, S. 1984. Cell membrane abnormality in Alzheimer's disease. Lancet 2:235.Google Scholar
  11. 11.
    Kálmán, J., Dey, I., Ilona, S. V., Matkovics, B., Brown, D., Janka, Z., Farkas, T., and Joó, F. 1994. Platelet membrane fluidity and plasma malondialdehyde levels in Alzheimer's demented patients with and without family history of dementia. Biol. Psychiat. 35:190–194.Google Scholar
  12. 12.
    Zubenko, G. S. 1989. Endoplasmic reticulum abnormality in Alzheimer's disease: selective alteration in platelet NADH-cytochrome C reductase activity. J. Geriatr. Psychiat. Neurol. 2:3–10.Google Scholar
  13. 13.
    Di Luca, M., Pastorino, L., Bianchetti, A., Perez, J., Vignolo, L. A., Lenzi, G. L., Trabucchi, M., Cattabeni, F., and Padovani, A. 1988. Differential level of platelet amyloid beta precursor protein isoforms: an early markers for Alzheimer's disease. Arch. Neurol. 55:1195–1200.Google Scholar
  14. 14.
    Perry, R. H., Wilson, I. D., Bober, M. J., Atack, J., Blessed, G., Tomlinson, B. E., and Perry, E. K. 1982. Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type. Lancet 1:174–175.Google Scholar
  15. 15.
    Palotás, A., Kálmán, J., Palotás, M., Juhász, A., Janka, Z., and Penke, B. 2002. β-amyloid induced increase in the resting intracellular calcium concentration gives support to tell Alzheimer lymphocytes from control ones. Brain Res. Bull. 58:203–205.Google Scholar
  16. 16.
    Etcheberrigaray, R. and Bhagavan, S. Ionic and signal transduction alterations in Alzheimer's disease: Relevance of studies on peripheral cells. 1999. Mol. Neurobiol. 20:93–109.Google Scholar
  17. 17.
    Eckert, A., Cotman, C. W., Zerfass, R., Hennerici, M., and Muller, W. E. Lymphocytes as cell model to study apoptosis in Alzheimer's disease: vulnerability to programmed cell death appears to be altered. 1998. J. Neurol. Transm. Suppl. 54:259–267.Google Scholar
  18. 18.
    Bergman, M., Salman, H., Beloosesky, Y., Djaldetti, M., and Bessler, H. 2002. Are peripheral blood cells from patients with Alzheimer's disease more sensitive to apoptotic stimuli? Alzheimer Dis. Assoc. Dis. 16:156–160.Google Scholar
  19. 19.
    Mórocz, M., Kálmán, J., Juhász, A., Sinkó, I., McGlynn, A. P., Downes, C. S., Janka, Z., Raskó, I. 2002. Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer's disease. Neurobiol. Aging 23:47–53.Google Scholar
  20. 20.
    Dolman, C. L. 1984. Diagnosis of neurometabolic disorders by examination of skin biopsies and lymphocytes. Semin. Diagn. Pathol. 1:82–97.Google Scholar
  21. 21.
    Kálmán, J., Kitajka, K., Pákáski, M., Zvara, Á., Juhász, A., Vincze, G., Janka, Z., and Puskás, L. G. 2004. Gene expression profile analysis of lymphocytes from Alzheimer's patients. (in press)Google Scholar
  22. 22.
    Kitajka, K., Puskás, L. G., Zvara, Á., Hackler, L. Jr., Barcelo-Coblijn, G., Yeo Y. K., and Farkas T. 2002. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA 99:2619–2624.Google Scholar
  23. 23.
    Puskás, L. G., Hackler, L. Jr., Kovács, G., Kupihár, Z., Zvara Á., Micsik, T., and van Hummelen P. 2002. Recovery of cyanine-dye nucleotide triphosphates. Anal. Biochem. 305:279–281.Google Scholar
  24. 24.
    Puskás, L. G., Zvara Á, Hackler, L. J., and van Hummelen, P. 2002. Comparison of different sample amplification method for microarray gene expression analysis. RNA amplification results in reproducible microarray data with slight ratio bias. Biotechniques 32:1330–1340.Google Scholar
  25. 25.
    Herwig, S., and Strauss, M. 1997. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur. J. Biochem. 246:581–601.Google Scholar
  26. 26.
    Rohn, T. T., Head, E., Su, J. H., Anderson, A. J., Bahr, B. A., Cotman, C. W., and Cribbs, D. H. 2001. Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer's disease. Am. J. Pathol. 158:189–198.Google Scholar
  27. 27.
    Takeda, M., Tatebayashi, Y., and Nishimura, T. 1992. Change in the cytoskeletal system in fibroblasts from patients with familial Alzheimer's disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 16:317–328.Google Scholar
  28. 28.
    Tollefson, G. D., Godes, M., Warren, J. B., Haus, E., Luxenberg, M., and Garvey, M. 1989. Lymphopenia in primary degenerative dementia. J. Psychiatr. Res. 23:191–199.Google Scholar
  29. 29.
    Serafeim, A. and Gordon, J. 2001. The immune system gets nervous. Curr. Opin. Pharmacol. 1:398–403.Google Scholar
  30. 30.
    Nagga, A. K. and Marcusson, J. 1998. Associated physical disease in a demented population. Aging Milano 10:440–444.Google Scholar
  31. 31.
    McGeer, P. L. and McGeer, E. G. 2002. The possible role of complement activation in Alzheimer's disease. Trends Mol. Med. 8:519–523.Google Scholar
  32. 32.
    Mossner, R. and Lesch, K. P. 1998. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 12:249–271.Google Scholar
  33. 33.
    Stefulj J., Jernej, B., Cicin-Sain, L., Rinner, I., and Schauenstein, K. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. 2000. Brain Behav. Immun. 14:219–224.Google Scholar
  34. 34.
    Aune, T. M., Kelley, K. A., Ranges, G. E., Bombara, M. P., 1990. Serotonin-activated signal transduction via serotonin receptors on Jurkat cells. J. Immunol. 145:1826–1832.Google Scholar
  35. 35.
    Plaut, M. Lymphocyte hormone receptors. 1987. Ann. Rev. Immunol. 5:621–629.Google Scholar
  36. 36.
    Hellstrand, K. and Hermodsson, S., Role of serotonin in the regulation of human natural killer cell cytotoxicity, 1987. J. Immunol. 139:869–875.Google Scholar
  37. 37.
    Bonnet, M., Lespinats, G., and Burtin, C. Histamine and serotonin suppression of lymphocyte response to phytohemagglutinin and allogenic cells. 1984. Cell. Immunol. 83:280–291.Google Scholar
  38. 38.
    Bellinger, D. L., Felten, S. Y., and Felten, D. L. 1988. Maintenance of non-adrenergic sympathetic innervation in the involuted thymus of the aged Fisher 344 rat. Brain Behav. Immunol. 2:133–150.Google Scholar
  39. 39.
    Hershey, J. W. B. and Merrick, W. C. 2000. Pathway and mechanism of initiation of protein synthesis. Pages 33–88, in Sonenberg N., Hershey, J. W. B., Mathews, M. B., eds. Translational control of gene expression, (2nd Ed.), Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  40. 40.
    Schauenstein, K., Felsner, P., Rinner, I., Liebmann, P. M., Stevenson, J. R., Westermann, J., Haas, H. S., Cohen, R. L., and Chambers, D. A. 2000. In vivo immunomodulation by peripheral adrenergic and cholinergic agonists/antagonists in rat and mouse models. Ann. N. Y. Acad. Sci. 917:618–627.Google Scholar
  41. 41.
    Rabey, J. M., Shenkman, L., Gilad, G. M. 1986. Cholinergic muscarinic binding by human lymphocytes: change with aging, antagonist treatment, and senile dementia of the Alzheimer type. Ann. Neurol. 20:628–631.Google Scholar
  42. 42.
    Amenta, F., Bronzetti, E., Fellici, L., Ricci, A., Tayebati, S. K., 1999. Dopamine D2-like receptors on human peripheral blood lymphocytes: a radioligand binding assay and immunocytochemical study. J. Auton. Pharmacol. 19:151–159.Google Scholar
  43. 43.
    Nagai, Y., Ueno, S., Saeki, Y., Soga, F., and Yanagihara, T. 1993. Expression of the D3 dopamine receptor gene and a novel variant transcript generated by alternative splicing in human peripheral blood lymphocytes. Biochem. Biophys. Res. Commun. 194:374–386.Google Scholar
  44. 44.
    Ricci, A., Bronzetti, E., Felici, L., Tayebati, S. K., and Amenta, F., 1997. Dopamine D4 receptor in human peripheral blood lymphocytes: a radioligand binding assay study. Neurosci. Lett. 229:130–134.Google Scholar
  45. 45.
    Takahashi, N., Nagai, Y., Ueno, S., Saeki, Y., and Yanagihara, T. 1992. Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudogenes. FEBS Lett. 314:23–25.Google Scholar
  46. 46.
    Rocca, P., Ferrero, P., Gualerzi, A., Zanalda, E., Maina, G., Bergamasco, B., and Ravizza, L. 1991. Peripheral type of benzodiazepine receptors in anxiety disorders. Acta Psychiatr. Scand. 84:537–544.Google Scholar
  47. 47.
    Stanisz, A. N., Scicchitano, R., Dazin, P., Bienenstock, J., and Payan, D. G. 1987. Distribution of substance P receptors on murine spleen and Peyer's patch T and B cells. J. Immunol. 139:749–756.Google Scholar
  48. 48.
    Evans, C. J., Erdélyi, E., Barchas, J. D. 1986. Candidate opioid peptides for the interaction with the immune system. Pages 3–16, in Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Goog, A., (eds.), Enkephalins and endorphins, Plenum, New York.Google Scholar
  49. 49.
    Viik, P., Opstad, P. K., and Boyum A. Binding of vasoactive intestinal polypeptide (VIP) by human monocytes: demonstration of specific binding sites. 1985. Regul. Pept. 12:145–153.Google Scholar
  50. 50.
    Bishopric, N. H., Cohen, H. J., and Lefkowitz, R. J. β-adrenergic receptors in lymphocyte subpopulations. 1980. J. Allergy Clin. Immunol. 63:29–33.Google Scholar
  51. 51.
    Shenkman, L., Rabey, J. M., Gilad, G. M. Cholinergic muscarinic binding by rat lymphocytes: effects of antagonist treatment, strain and aging. 1991. Brain Res. 564:203–219.Google Scholar
  52. 52.
    D'Amato, R. J., Zweig, R. M., Whitehouse, P. J., Wenk, G. L., Singer, H. S., Mayeux, R., Price, D. L., and Snyder, S. H. 1987. Aminergic systems in Alzheimer's disease and Parkinson's disease. Ann. Neurol. 22:229–236.Google Scholar
  53. 53.
    Zweig, R. M., Ross, C. A., Hedreen, J. C., Steele, C., Cardillo, J. E., Whitehouse, P. J., Folstein, M. F., Price, D. L. 1988. The neuropathology of aminergic nuclei in Alzheimer's disease. Ann. Neurol. 24:233–242.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • András Palotás
    • 1
    • 2
    Email author
  • László G. Puskás
    • 3
  • Klára Kitajka
    • 4
  • Miklós Palotás
    • 1
  • József Molnár
    • 5
  • Magdolna Pákáski
    • 6
  • Zoltán Janka
    • 1
  • Botond Penke
    • 2
  • János Kálmán
    • 1
  1. 1.Department of Psychiatry, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of MedicineUniversity of SzegedSzegedHungary
  2. 2.Department of Medical Chemistry, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of MedicineUniversity of SzegedSzegedHungary
  3. 3.Laboratory of Functional Genomics, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  4. 4.Institute of Biochemistry, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  5. 5.Department of Microbiology, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of MedicineUniversity of SzegedSzegedHungary
  6. 6.Alzheimer's Disease Research Center, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations