Neurochemical Research

, Volume 29, Issue 6, pp 1093–1103

Mining Microarrays for Metabolic Meaning: Nutritional Regulation of Hypothalamic Gene Expression

  • Charles V. Mobbs
  • Kelvin Yen
  • Jason Mastaitis
  • Ha Nguyen
  • Elizabeth Watson
  • Elisa Wurmbach
  • Stuart C. Sealfon
  • Andrew Brooks
  • Stephen R. J. Salton


DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.

Brain diabetes fasting hypothalamus microarray obesity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondjers, C., Kalen, M., Hellstrom, M., Scheidl, S. J., Abramsson, A., Renner, O., Lindahl, P., Cho, H., Kehrl, J., and Betsholtz, C. 2003. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am. J. Pathol. 162:721–9.PubMedGoogle Scholar
  2. 2.
    Cao, Y. and Dulac, C. 2001. Profiling brain transcription: neurons learn a lesson from yeast. Curr. Opin. Neurobiol. 11:615–20.PubMedGoogle Scholar
  3. 3.
    Elliott, R. C., Miles, M. F., and Lowenstein, D. H. 2003. Overlapping microarray profiles of dentate gyrus gene expression during development-and epilepsy-associated neurogenesis and axon outgrowth. J. Neurosci. 23:2218–27.PubMedGoogle Scholar
  4. 4.
    Ginsberg, S. D. and Che, S. 2002. RNA amplification in brain tissues. Neurochem. Res. 27:981–92.PubMedGoogle Scholar
  5. 5.
    Kotlyar, M., Fuhrman, S., Ableson, A., and Somogyi, R. 2002. Spearman correlation identifies statistically significant gene expression clusters in spinal cord development and injury. Neurochem. Res. 27:1133–40.PubMedGoogle Scholar
  6. 6.
    Linnarsson, S., Mikaels, A., Baudet, C., and Ernfors, P. 2001. Activation by GDNF of a transcriptional program repressing neurite growth in dorsal root ganglia. Proc. Natl. Acad. Sci. USA 98:14681–6.PubMedGoogle Scholar
  7. 7.
    Mody, M., Cao, Y., Cui, Z., Tay, K. Y., Shyong, A., Shimizu, E., Pham, K., Schultz, P., Welsh, D., and Tsien, J. Z. 2001. Genome-wide gene expression profiles of the developing mouse hippocampus. Proc. Natl. Acad. Sci. USA 98:8862–7.PubMedGoogle Scholar
  8. 8.
    Balasubramaniam, J. and Del Bigio, M. R. 2002. Analysis of age-dependent alteration in the brain gene expression profile following induction of hydrocephalus in rats. Exp. Neurol. 173:105–13.PubMedGoogle Scholar
  9. 9.
    Colantuoni, C., Jeon, O. H., Hyder, K., Chenchik, A., Khimani, A. H., Narayanan, V., Hoffman, E. P., Kaufmann, W. E., Naidu, S., and Pevsner, J. 2001. Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8:847–65.PubMedGoogle Scholar
  10. 10.
    Cooper, J. D. 2003. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr. Opin. Neurol. 16:121–8.PubMedGoogle Scholar
  11. 11.
    Johnston, M. V., Jeon, O. H., Pevsner, J., Blue, M. E., and Naidu, S. 2001. Neurobiology of Rett syndrome: a genetic disorder of synapse development. Brain. Dev. 23 (Suppl. 1):S206–13.PubMedGoogle Scholar
  12. 12.
    Tudor, M., Akbarian, S., Chen, R. Z., and Jaenisch, R. 2002. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl. Acad. Sci. USA 99:15536–41.PubMedGoogle Scholar
  13. 13.
    Araki, T., Nagarajan, R., and Milbrandt, J. 2001. Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J. Biol. Chem. 276:34131–41.PubMedGoogle Scholar
  14. 14.
    Bowler, R. P., Sheng, H., Enghild, J. J., Pearlstein, R. D., Warner, D. S., and Crapo, J. D. 2002. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med. 33:1141–52.PubMedGoogle Scholar
  15. 15.
    Fan, M., Mi, R., Yew, D. T., and Chan, W. Y. 2001. Analysis of gene expression following sciatic nerve crush and spinal cord hemisection in the mouse by microarray expression profiling. Cell. Mol. Neurobiol. 21:497–508.PubMedGoogle Scholar
  16. 16.
    Ginsberg, M. D. 2003. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34:214–23.PubMedGoogle Scholar
  17. 17.
    Hu, J., Fink, D., and Mata, M. 2002. Microarray analysis suggests the involvement of proteasomes, lysosomes, and matrix metalloproteinases in the response of motor neurons to root avulsion. Eur. J. Neurosci. 16:1409–16.PubMedGoogle Scholar
  18. 18.
    Jin, K., Mao, X. O., Eshoo, M. W., Nagayama, T., Minami, M., Simon, R. P., and Greenberg, D. A. 2001. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol. 50:93–103.PubMedGoogle Scholar
  19. 19.
    Ko, J., Na, D. S., Lee, Y. H., Shin, S. Y., Kim, J. H., Hwang, B. G., Min, B. I., and Park, D. S. 2002. cDNA microarray analysis of the differential gene expression in the neuropathic pain and electroacupuncture treatment models. J. Biochem. Mol. Biol. 35:420–7.PubMedGoogle Scholar
  20. 20.
    Kobori, N., Clifton, G. L., and Dash, P. 2002. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain. Res. Mol. Brain. Res. 104:148–58.PubMedGoogle Scholar
  21. 21.
    Long, Y., Zou, L., Liu, H., Lu, H., Yuan, X., Robertson, C. S., and Yang, K. 2003. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J. Neurosci. Res. 71:710–20.PubMedGoogle Scholar
  22. 22.
    Marciano, P. G., Eberwine, J. H., Ragupathi, R., Saatman, K. E., Meaney, D. F., and McIntosh, T. K. 2002. Expression profiling following traumatic brain injury: a review. Neurochem. Res. 27:1147–55.PubMedGoogle Scholar
  23. 23.
    Matzilevich, D. A., Rall, J. M., Moore, A. N., Grill, R. J., and Dash, P. K. 2002. High-density microarray analysis of hippocampal gene expression following experimental brain injury. J. Neurosci. Res. 67:646–63.PubMedGoogle Scholar
  24. 24.
    Tachibana, T., Noguchi, K., and Ruda, M. A. 2002. Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci. Lett. 327:133–7.PubMedGoogle Scholar
  25. 25.
    Tang, Y., Nee, A. C., Lu, A., Ran, R., and Sharp, F. R. 2003. Blood genomic expression profile for neuronal injury. J. Cereb. Blood Flow Metab. 23:310–9.PubMedGoogle Scholar
  26. 26.
    Whitney, L. W., Becker, K. G., Tresser, N. J., Caballero-Ramos, C. I., Munson, P. J., Prabhu, V. V., Trent, J. M., McFarland, H. F., and Biddison, W. E. 1999. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46:425–8.PubMedGoogle Scholar
  27. 27.
    Bahn, S., Augood, S. J., Ryan, M., Standaert, D. G., Starkey, M., and Emson, P. C. 2001. Gene expression profiling in the postmortem human brain—no cause for dismay. J. Chem. Neuroanat. 22:79–94.PubMedGoogle Scholar
  28. 28.
    Bunney, W. E., Bunney, B. G., Vawter, M. P., Tomita, H., Li, J., Evans, S. J., Choudary, P. V., Myers, R. M., Jones, E. G., Watson, S. J., and Akil, H. 2003. Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am. J. Psychiatry 160:657–66.PubMedGoogle Scholar
  29. 29.
    Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., Haroutunian, V., and Fienberg, A. A. 2001. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98:4746–51.PubMedGoogle Scholar
  30. 30.
    Li, M. D., Konu, O., Kane, J. K., and Becker, K. G. 2002. Microarray technology and its application on nicotine research. Mol. Neurobiol. 25:265–85.PubMedGoogle Scholar
  31. 31.
    Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., and Levitt, P. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53–67.PubMedGoogle Scholar
  32. 32.
    Mirnics, K., Middleton, F. A., Lewis, D. A., and Levitt, P. 2001. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24:479–86.PubMedGoogle Scholar
  33. 33.
    Mirnics, K., Middleton, F. A., Stanwood, G. D., Lewis, D. A., and Levitt, P. 2001. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol. Psychiatry 6:293–301.PubMedGoogle Scholar
  34. 34.
    Pongrac, J., Middleton, F. A., Lewis, D. A., Levitt, P., and Mirnics, K. 2002. Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27:1049–63.PubMedGoogle Scholar
  35. 35.
    Vawter, M. P., Crook, J. M., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Becker, K. G., and Freed, W. J. 2002. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr. Res. 58:11–20.PubMedGoogle Scholar
  36. 36.
    Williams, M. 2003. Genome-based drug discovery: prioritizing disease-susceptibility/disease-associated genes as novel drug targets for schizophrenia. Curr. Opin. Investig. Drugs 4:31–6.PubMedGoogle Scholar
  37. 37.
    Wong, A. H., Macciardi, F., Klempan, T., Kawczynski, W., Barr, C. L., Lakatoo, S., Wong, M., Buckle, C., Trakalo, J., Boffa, E., Oak, J., Azevedo, M. H., Dourado, A., Coelho, I., Macedo, A., Vicente, A., Valente, J., Ferreira, C. P., Pato, M. T., Pato, C. N., Kennedy, J. L., and Van Tol, H. H. 2003. Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene. Mol. Psychiatry 8:156–66.PubMedGoogle Scholar
  38. 38.
    Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J. 2002. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and proinflammatory signaling. J. Neurosci. Res. 70:462–73.PubMedGoogle Scholar
  39. 39.
    Beitner-Johnson, D., Seta, K., Yuan, Y., Kim, H., Rust, R. T., Conrad, P. W., Kobayashi, S., and Millhorn, D. E. 2001. Identification of hypoxia-responsive genes in a dopaminergic cell line by subtractive cDNA libraries and microarray analysis. Parkinsonism Relat. Disord. 7:273–281.PubMedGoogle Scholar
  40. 40.
    Grunblatt, E., Mandel, S., Maor, G., and Youdim, M. B. 2001. Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray: effect of R-apomorphine. J. Neurochem. 78:1–12.Google Scholar
  41. 41.
    Hanzel, D. K., Trojanowski, J. Q., Johnston, R. F., and Loring, J. F. 1999. High-throughput quantitative histological analysis of Alzheimer's disease pathology using a confocal digital microscanner. Nat. Biotechnol. 17:53–7.PubMedGoogle Scholar
  42. 42.
    Hata, R., Masumura, M., Akatsu, H., Li, F., Fujita, H., Nagai, Y., Yamamoto, T., Okada, H., Kosaka, K., Sakanaka, M., and Sawada, T. 2001. Up-regulation of calcineurin Abeta mRNA in the Alzheimer's disease brain: assessment by cDNA microarray. Biochem. Biophys. Res. Commun. 284:310–6.PubMedGoogle Scholar
  43. 43.
    Ho, L., Guo, Y., Spielman, L., Petrescu, O., Haroutunian, V., Purohit, D., Czernik, A., Yemul, S., Aisen, P. S., Mohs, R., and Pasinetti, G. M. 2001. Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neurosci. Lett. 298:191–4.PubMedGoogle Scholar
  44. 44.
    Kim, S. H., Won, S. J., Sohn, S., Kwon, H. J., Lee, J. Y., Park, J. H., and Gwag, B. J. 2002. Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J. Cell Biol. 159:821–31.PubMedGoogle Scholar
  45. 45.
    Loring, J. F., Wen, X., Lee, J. M., Seilhamer, J., and Somogyi, R. 2001. A gene expression profile of Alzheimer's disease. DNA Cell Biol. 20:683–95.PubMedGoogle Scholar
  46. 46.
    Mandel, S., Grunblatt, E., Maor, G., and Youdim, M. B. 2002. Early and late gene changes in MPTP mice model of Parkinson's disease employing cDNA microarray. Neurochem. Res. 27:1231–43.PubMedGoogle Scholar
  47. 47.
    Mandel, S., Grunblatt, E., Riederer, P., and Youdim, M. B. 2003. Genes and oxidative stress in parkinsonism: cDNA microarray studies. Adv. Neurol. 91:123–32.PubMedGoogle Scholar
  48. 48.
    Napolitano, M., Centonze, D., Calce, A., Picconi, B., Spiezia, S., Gulino, A., Bernardi, G., and Calabresi, P. 2002. Experimental parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiol. Dis. 10:387–95.PubMedGoogle Scholar
  49. 49.
    Pasinetti, G. M. 2001. Use of cDNA microarray in the search for molecular markers involved in the onset of Alzheimer's disease dementia. J. Neurosci. Res. 65:471–6.PubMedGoogle Scholar
  50. 50.
    Pasinetti, G. M. and Ho, L. 2001. From cDNA microarrays to high-throughput proteomics. Implications in the search for preventive initiatives to slow the clinical progression of Alzheimer's disease dementia. Restor. Neurol. Neurosci. 18:137–42.PubMedGoogle Scholar
  51. 51.
    Puskas, L. G., Kitajka, K., Nyakas, C., Barcelo-Coblijn, G., and Farkas, T. 2003. Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–5.PubMedGoogle Scholar
  52. 52.
    Uryu, S., Tokuhiro, S., and Oda, T. 2003. Beta-Amyloid-specific upregulation of stearoyl coenzyme A desaturase-1 in macrophages. Biochem. Biophys. Res. Commun. 303:302–5.PubMedGoogle Scholar
  53. 53.
    Wada, R., Tifft, C. J., and Proia, R. L. 2000. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl. Acad. Sci. USA 97:10954–9.PubMedGoogle Scholar
  54. 54.
    Yao, P. J., Zhu, M., Pyun, E. I., Brooks, A. I., Therianos, S., Meyers, V. E., and Coleman, P. D. 2003. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease. Neurobiol. Dis. 12:97–109.PubMedGoogle Scholar
  55. 55.
    Yoo, M. S., Chun, H. S., Son, J. J., DeGiorgio, L. A., Kim, D. J., Peng, C., and Son, J. H. 2003. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease. Brain. Res. Mol. Brain. Res. 110:76–84.PubMedGoogle Scholar
  56. 56.
    Yoshihara, T., Ishigaki, S., Yamamoto, M., Liang, Y., Niwa, J., Takeuchi, H., Doyu, M., and Sobue, G. 2002. Differential expression of inflammation-and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 80:158–67.PubMedGoogle Scholar
  57. 57.
    Prolla, T. A. 2002. DNA microarray analysis of the aging brain. Chem. Senses 27:299–306.PubMedGoogle Scholar
  58. 58.
    Zhou, F. C., Duguid, J. R., Edenberg, H. J., McClintick, J., Young, P., and Nelson, P. 2001. DNA microarray analysis of differential gene expression of 6-year-old rat neural striatal progenitor cells during early differentiation. Restor. Neurol. Neurosci. 18:95–104.PubMedGoogle Scholar
  59. 59.
    Cavallaro, S., Schreurs, B. G., Zhao, W., D'Agata, V., and Alkon, D. L. 2001. Gene expression profiles during long-term memory consolidation. Eur. J. Neurosci. 13:1809–15.PubMedGoogle Scholar
  60. 60.
    Cavallaro, S., Dagata, V., and Alkon, D. L. 2002. Programs of gene expression during the laying down of memory formation as revealed by DNA microarrays. Neurochem. Res. 27:1201–7.PubMedGoogle Scholar
  61. 61.
    Cavallaro, S., D'Agata, V., Manickam, P., Dufour, F., and Alkon, D. L. 2002. Memory-specific temporal profiles of gene expression in the hippocampus. Proc. Natl. Acad. Sci. USA 99:16279–84.PubMedGoogle Scholar
  62. 62.
    D'Agata, V. and Cavallaro, S. 2002. Gene expression profiles—a new dynamic and functional dimension to the exploration of learning and memory. Rev. Neurosci. 13:209–19.PubMedGoogle Scholar
  63. 63.
    Dent, G. W., O'Dell, D. M., and Eberwine, J. H. 2001. Gene expression profiling in the amygdala: an approach to examine the molecular substrates of mammalian behavior. Physiol. Behav. 73:841–7.PubMedGoogle Scholar
  64. 64.
    Irwin, L. N. 2001. Gene expression in the hippocampus of behaviorally stimulated rats: analysis by DNA microarray. Brain. Res. Mol. Brain. Res. 96:163–9.PubMedGoogle Scholar
  65. 65.
    Leil, T. A., Ossadtchi, A., Cortes, J. S., Leahy, R. M., and Smith, D. J. 2002. Finding new candidate genes for learning and memory. J. Neurosci. Res. 68:127–37.PubMedGoogle Scholar
  66. 66.
    Luo, Y., Long, J. M., Spangler, E. L., Longo, D. L., Ingram, D. K., and Weng, N. P. 2001. Identification of maze learning-associated genes in rat hippocampus by cDNA microarray. J. Mol. Neurosci. 17:397–404.PubMedGoogle Scholar
  67. 67.
    Hernan, R., Fasheh, R., Calabrese, C., Frank, A. J., Maclean, K. H., Allard, D., Barraclough, R., and Gilbertson, R. J. 2003. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res. 63:140–8.PubMedGoogle Scholar
  68. 68.
    Hui, A. B., Lo, K. W., Yin, X. L., Poon, W. S., and Ng, H. K. 2001. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab. Invest. 81:717–23.PubMedGoogle Scholar
  69. 69.
    Ljubimova, J. Y., Lakhter, A. J., Loksh, A., Yong, W. H., Riedinger, M. S., Miner, J. H., Sorokin, L. M., Ljubimov, A. V., and Black, K. L. 2001. Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 61:5601–10.PubMedGoogle Scholar
  70. 70.
    Miettinen, H. E., Jarvinen, T. A., Kellner, U., Kauraniemi, P., Parwaresch, R., Rantala, I., Kalimo, H., Paljarvi, L., Isola, J., and Haapasalo, H. 2000. High topoisomerase IIalpha expression associates with high proliferation rate and poor prognosis in oligodendrogliomas. Neuropathol. Appl. Neurobiol. 26:504–12.PubMedGoogle Scholar
  71. 71.
    Nishizuka, I., Ishikawa, T., Hamaguchi, Y., Kamiyama, M., Ichikawa, Y., Kadota, K., Miki, R., Tomaru, Y., Mizuno, Y., Tominaga, N., Yano, R., Goto, H., Nitanda, H., Togo, S., Okazaki, Y., Hayashizaki, Y., and Shimada, H. 2002. Analysis of gene expression involved in brain metastasis from breast cancer using cDNA microarray. Breast Cancer 9:26–32.PubMedGoogle Scholar
  72. 72.
    Rickman, D. S., Bobek, M. P., Misek, D. E., Kuick, R., Blaivas, M., Kurnit, D. M., Taylor, J., and Hanash, S. M. 2001. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 61:6885–91.PubMedGoogle Scholar
  73. 73.
    Sallinen, S. L., Sallinen, P. K., Haapasalo, H. K., Helin, H. J., Helen, P. T., Schraml, P., Kallioniemi, O. P., and Kononen, J. 2000. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60:6617–22.PubMedGoogle Scholar
  74. 74.
    Schaefer, K. L., Wai, D., Poremba, C., Diallo, R., Boecker, W., and Dockhorn-Dworniczak, B. 2002. Analysis of TP53 germline mutations in pediatric tumor patients using DNA microarray-based sequencing technology. Med. Pediatr. Oncol. 38:247–53.PubMedGoogle Scholar
  75. 75.
    Tanwar, M. K., Gilbert, M. R., and Holland, E. C. 2002. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 62:4364–8.PubMedGoogle Scholar
  76. 76.
    Yeatman, T. J. 2003. The future of clinical cancer management: one tumor, one chip. Am. Surg. 69:41–4.PubMedGoogle Scholar
  77. 77.
    Zardo, G., Tiirikainen, M. I., Hong, C., Misra, A., Feuerstein, B. G., Volik, S., Collins, C. C., Lamborn, K. R., Bollen, A., Pinkel, D., Albertson, D. G., and Costello, J. F. 2002. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32:453–8.PubMedGoogle Scholar
  78. 78.
    Hoffman, P. L., Miles, M., Edenberg, H. J., Sommer, W., Tabakoff, B., Wehner, Jm, and Lewohl, J. 2003. Gene expression in brain: a window on ethanol dependence, neuroadaptation, and preference. Alcohol Clin. Exp. Res. 27:155–68.PubMedGoogle Scholar
  79. 79.
    Lewohl, J. M., Wang, L., Miles, M. F., Zhang, L., Dodd, P. R., and Harris, R. A. 2000. Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin. Exp. Res. 24:1873–82.PubMedGoogle Scholar
  80. 80.
    Mayfield, R. D., Lewohl, J. M., Dodd, P. R., Herlihy, A., Liu, J., and Harris, R. A. 2002. Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J. Neurochem. 81:802–13.PubMedGoogle Scholar
  81. 81.
    Saito, M., Smiley, J., Toth, R., and Vadasz, C. 2002. Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem. Res. 27:1221–9.PubMedGoogle Scholar
  82. 82.
    Ang, E., Chen, J., Zagouras, P., Magna, H., Holland, J., Schaeffer, E., and Nestler, E. J. 2001. Induction of nuclear factor-kappaB in nucleus accumbens by chronic cocaine administration. J. Neurochem. 79:221–4.PubMedGoogle Scholar
  83. 83.
    Jayanthi, S., McCoy, M. T., Ladenheim, B., and Cadet, J. L. 2002. Methamphetamine causes coordinate regulation of Src, Cas, Crk, and the Jun N-terminal kinase-Jun pathway. Mol. Pharmacol. 61:1124–31.PubMedGoogle Scholar
  84. 84.
    Kontkanen, O., Toronen, P., Lakso, M., Wong, G., and Castren, E. 2002. Antipsychotic drug treatment induces differential gene expression in the rat cortex. J. Neurochem. 83:1043–53.PubMedGoogle Scholar
  85. 85.
    Konu, O., Kane, J. K., Barrett, T., Vawter, M. P., Chang, R., Ma, J. Z., Donovan, D. M., Sharp, B., Becker, K. G., and Li, M. D. 2001. Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res. 909:194–203.PubMedGoogle Scholar
  86. 86.
    Lee, K. H., Ahn, J. I., Yu, D. H., Koh, H. C., Kim, S. H., Yang, B. H., and Lee, Y. S. 2003. Dextromethorphan alters gene expression in rat brain hippocampus and cortex. Int. J. Mol. Med. 11:559–68.PubMedGoogle Scholar
  87. 87.
    Loguinov, A. V., Anderson, L. M., Crosby, G. J., and Yukhananov, R. Y. 2001. Gene expression following acute morphine administration. Physiol. Genomics. 6:169–81.PubMedGoogle Scholar
  88. 88.
    Parmentier-Batteur, S., Jin, K., Xie, L., Mao, X. O., and Greenberg, D. A. 2002. DNA microarray analysis of cannabinoid signaling in mouse brain in vivo. Mol. Pharmacol. 62:828–35.PubMedGoogle Scholar
  89. 89.
    Sokolov, B. P., Polesskaya, O. O., and Uhl, G. R. 2003. Mouse brain gene expression changes after acute and chronic amphetamine. J. Neurochem. 84:244–52.PubMedGoogle Scholar
  90. 90.
    Toyooka, K., Usui, M., Washiyama, K., Kumanishi, T., and Takahashi, Y. 2002. Gene expression profiles in the brain from phencyclidine-treated mouse by using DNA microarray. Ann. NY Acad. Sci. 965:10–20.PubMedGoogle Scholar
  91. 91.
    Uhl, G. R., Liu, Q. R., Walther, D., Hess, J., and Naiman, D. 2001. Polysubstance abuse-vulnerability genes: genome scans for association, using 1,004 subjects and 1,494 single-nucleotide polymorphisms. Am. J. Hum. Genet. 69:1290–300.PubMedGoogle Scholar
  92. 92.
    Xie, T., Tong, L., Barrett, T., Yuan, J., Hatzidimitriou, G., McCann, U. D., Becker, K. G., Donovan, D. M., and Ricaurte, G. A. 2002. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci. 22:274–83.PubMedGoogle Scholar
  93. 93.
    Yamada, M., Yamazaki, S., Takahashi, K., Nishioka, G., Kudo, K., Ozawa, H., Yamada, S., Kiuchi, Y., Kamijima, K., Higuchi, T., and Momose, K. 2000. Identification of a novel gene with RING-H2 finger motif induced after chronic antidepressant treatment in rat brain. Biochem. Biophys. Res. Commun. 278:150–7.PubMedGoogle Scholar
  94. 94.
    Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25:295–301.PubMedGoogle Scholar
  95. 95.
    Cotman, C. W. and Engesser-Cesar, C. 2002. Exercise enhances and protects brain function. Exerc. Sport. Sci. Rev. 30:75–9.PubMedGoogle Scholar
  96. 96.
    Molteni, R., Ying, Z., and Gomez-Pinilla, F. 2002. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 16:1107–16.PubMedGoogle Scholar
  97. 97.
    Tong, L., Shen, H., Perreau, V. M., Balazs, R., and Cotman, C. W. 2001. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol. Dis. 8:1046–56.PubMedGoogle Scholar
  98. 98.
    Becker, A. J., Wiestler, O. D., and Blumcke, I. 2002. Functional genomics in experimental and human temporal lobe epilepsy: powerful new tools to identify molecular disease mechanisms of hippocampal damage. Prog. Brain Res. 135:161–73.PubMedGoogle Scholar
  99. 99.
    Li, J. Y., Lescure, P. A., Misek, D. E., Lai, Y. M., Chai, B. X., Kuick, R., Thompson, R. C., Demo, R. M., Kurnit, D. M., Michailidis, G., Hanash, S. M., and Gantz, I. 2002. Food deprivation-induced expression of minoxidil sulfotransferase in the hypothalamus uncovered by microarray analysis. J. Biol. Chem. 277:9069–76.PubMedGoogle Scholar
  100. 100.
    Bonaventure, P., Guo, H., Tian, B., Liu, X., Bittner, A., Roland, B., Salunga, R., Ma, X. J., Kamme, F., Meurers, B., Bakker, M., Jurzak, M., Leysen, J. E., and Erlander, M. G. 2002. Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res. 943:38–47.PubMedGoogle Scholar
  101. 101.
    Cho, Y., Gong, T. W., Stover, T., Lomax, M. I., and Altschuler, R. A. 2002. Gene expression profiles of the rat cochlea, cochlear nucleus, and inferior colliculus. J. Assoc. Res. Otolaryngol. 3:54–67.PubMedGoogle Scholar
  102. 102.
    Zhao, X., Lein, E. S., He, A., Smith, S. C., Aston, C., and Gage, F. H. 2001. Transcriptional profiling reveals strict boundaries between hippocampal subregions. J. Comp. Neurol. 441:187–96.PubMedGoogle Scholar
  103. 103.
    Chen, B., Wang, J. F., Sun, X., and Young, L. T. 2003. Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells. Biol. Psychiatry 53:530–7.PubMedGoogle Scholar
  104. 104.
    Fortin, A., Cregan, S. P., MacLaurin, J. G., Kushwaha, N., Hickman, E. S., Thompson, C. S., Hakim, A., Albert, P. R., Cecconi, F., Helin, K., Park, D. S., and Slack, R. S. 2001. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155:207–16.PubMedGoogle Scholar
  105. 105.
    Jin, K., Mao, X. O., Eshoo, M. W., del Rio, G., Rao, R., Chen, D., Simon, R. P., and Greenberg, D. A. 2002. cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem. Res. 27:1105–12.PubMedGoogle Scholar
  106. 106.
    Luo, Y., Cai, J., Liu, Y., Xue, H., Chrest, F. J., Wersto, R. P., and Rao, M. 2002. Microarray analysis of selected genes in neural stem and progenitor cells. J. Neurochem. 83:1481–97.PubMedGoogle Scholar
  107. 107.
    Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M., and Milbrandt, J. 2001. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30:355–68.PubMedGoogle Scholar
  108. 108.
    Nagarajan, R., Le, N., Mahoney, H., Araki, T., and Milbrandt, J. 2002. Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proc. Natl. Acad. Sci. USA 99:8998–9003.PubMedGoogle Scholar
  109. 109.
    Brown, V., Jin, P., Ceman, S., Darnell, J. C., O'Donnell, W. T., Tenenbaum, S. A., Jin, X., Feng, Y., Wilkinson, K. D., Keene, J. D., Darnell, R. B., and Warren, S. T. 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–87.PubMedGoogle Scholar
  110. 110.
    Chan, E. Y., Luthi-Carter, R., Strand, A., Solano, S. M., Hanson, S. A., DeJohn, M. M., Kooperberg, C., Chase, K. O., DiFiglia, M., Young, A. B., Leavitt, B. R., Cha, J. H., Aronin, N., Hayden, M. R., and Olson, J. M. 2002. Increased Huntington protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Hum. Mol. Genet. 11:1939–51.PubMedGoogle Scholar
  111. 111.
    D'Agata, V., Warren, S. T., Zhao, W., Torre, E. R., Alkon, D. L., and Cavallaro, S. 2002. Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiol. Dis. 10:211–8.PubMedGoogle Scholar
  112. 112.
    Luthi-Carter, R., Strand A. D., Hanson, S. A., Kooperberg, C., Schilling, G., La Spada, A. R., Morry, D. E., Young, A. B., Ross, C. A., Borchelt, D. R., and Olson, J. M. 2002. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet. 11:1927–37.PubMedGoogle Scholar
  113. 113.
    Maurer, M. H., Frietsch, T., Waschke, K. F., Kuschinsky, W., Gassmann, M., and Schneider, A. 2002. Cerebral transcriptome analysis of transgenic mice overexpressing erythropoietin. Neurosci. Lett. 327:181–4.PubMedGoogle Scholar
  114. 114.
    Mirjany, M., Ho, L., and Pasinetti, G. M. 2002. Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J. Pharmacol. Exp. Ther. 301:494–500.PubMedGoogle Scholar
  115. 115.
    Poguet, A. L., Legrand, C., Feng, X., Yen, P. M., Meltzer, P., Samarut, J., and Flamant, F. 2003. Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev. Biol. 254:188–99.PubMedGoogle Scholar
  116. 116.
    Wurmbach, E., Gonzalez-Maeso, J., Yuen, T., Ebersole, B. J., Mastaitis, J. W., Mobbs, C. V., and Sealfon, S. C. 2002. Validated genomic approach to study differentially expressed genes in complex tissues. Neurochem. Res. 27:1027–33.PubMedGoogle Scholar
  117. 117.
    Welle, S., Brooks, A. I., Delehanty, J. M., Needler, N., and Thornton, C. A. 2003. Gene expression profile of aging in human muscle. Physiol. Genomics 14:149–159.PubMedGoogle Scholar
  118. 118.
    Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic. Acids. Res. 31:e15.PubMedGoogle Scholar
  119. 119.
    Yuen, T., Zhang, W., Ebersole, B. J., and Sealfon, S. C. 2002. Monitoring G-protein-coupled receptor signaling with DNA microarrays and real-time polymerase chain reaction. Methods Enzymol. 345:556–69.PubMedGoogle Scholar
  120. 120.
    Wurmbach, E., Yuen, T., Ebersole, B. J., and Sealfon, S. C. 2001. Gonadotropin-releasing hormone receptor-coupled gene network organization. J. Biol. Chem. 276:47195–201.PubMedGoogle Scholar
  121. 121.
    Yen, K., Mastaitis, J. W., Isoda, F., Mizuno, T., Ngyuen, V., Sealfon, S. C., Wurmbach, E., Salton, S. R., and Mobbs, C. V. 2003. FKBP51 regulation by fasting and leptin. 63rd Scientific Sessions (ADA):1847-Poster.Google Scholar
  122. 122.
    Scammell, J. G., Denny, W. B., Valentine, D. L., and Smith, D. F. 2001. Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen. Comp. Endocrinol. 124:152–65.PubMedGoogle Scholar
  123. 123.
    Davies, T. H., Ning, Y. M., and Sanchez, E. R. 2002. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J. Biol. Chem. 277:4597–600.PubMedGoogle Scholar
  124. 124.
    Hubler, T. R., Denny, W. B., Valentine, D. L., Cheung-Flynn, J., Smith, D. F., and Scammell, J. G. 2003. The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology 144:2380–7.PubMedGoogle Scholar
  125. 125.
    Vermeer, H., Hendriks-Stegeman, B. I., van der Burg, B., van Buul-Offers, S. C., and Jansen, M. 2003. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J. Clin. Endocrinol. Metab. 88:277–84.PubMedGoogle Scholar
  126. 126.
    Pratt, W. B. and Toft, D. O. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228:111–33.Google Scholar
  127. 127.
    Tillman, J. B., Mote, P. L., Dhahbi, J. M., Walford, R. L., and Spindler, S. R. 1996. Dietary energy restriction in mice negatively regulates hepatic glucose-regulated protein 78 (GRP78) expression at the posttranscriptional level. J. Nutr. 126:416–23.PubMedGoogle Scholar
  128. 128.
    Dhahbi, J. M., Mote, P. L., Tillman, J. B., Walford, R. L., and Spindler, S. R. 1997. Dietary energy tissue-specifically regulates endoplasmic reticulum chaperone gene expression in the liver of mice. J. Nutr. 127:1758–64.PubMedGoogle Scholar
  129. 129.
    Mote, P. L., Tillman, J. B., and Spindler, S. R. 1998. Glucose regulation of GRP78 gene expression. Mech. Ageing Dev. 104:149–58.PubMedGoogle Scholar
  130. 130.
    Dhahbi, J. M., Cao, S. X., Tillman, J. B., Mote, P. L., Madore, M., Walford, R. L., and Spindler, S. R. 2001. Chaperone-mediated regulation of hepatic protein secretion by caloric restriction. Biochem. Biophys. Res. Commun. 284:335–9.PubMedGoogle Scholar
  131. 131.
    Tindal, M. H., Lee, K. L., Isham, K. R., Cadilla, C., and Kenney, F. T. 1988. Structure of a multihormonally regulated rat gene. Gene. 71:413–20.PubMedGoogle Scholar
  132. 132.
    Lee, K. L., Makkinje, A., Ch'Ang, L. Y., and Kenney, F. T. 1989. Molecular cloning and analysis of full-length cDNAs cognate to a rat gene under multihormonal control. Arch. Biochem. Biophys. 269:106–13.PubMedGoogle Scholar
  133. 133.
    Makkinje, A., Quinn, D. A., Chen, A., Cadilla, C. L., Force, T., Boventre, J. V., and Kyriakis, J. M. 2000. Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress. J. Biol. Chem. 275:17838–47.PubMedGoogle Scholar
  134. 134.
    Mastaitis, J., Isoda, F., Yen, K., E., W., Sealfon, S. C., and Mobbs, C. V. 2003. Hypoglycemia and fasting induce hypothalamic expression of GLUT-1, angiotensinogen, and IkBeta. 63rd Scientific Sessions (ADA):632-Poster.Google Scholar
  135. 135.
    Mizuno, T. M. and Mobbs, C. V. 1999. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 140:814–7.PubMedGoogle Scholar
  136. 136.
    Yen, K., Mastaitis, J. W., Salton, S. R., Wurmbach, E., Sealfon, S. C., and Mobbs, C. V. 2002. Fasting combined with hypoglycemia down-regulates hypothalamus serotonin receptor mRNA. Workshop on Functional Genomics in Neuroendocrinology, Berkeley, CA:18-Poster.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Charles V. Mobbs
    • 2
    • 3
  • Kelvin Yen
    • 1
    • 2
    • 5
  • Jason Mastaitis
    • 1
    • 2
    • 5
  • Ha Nguyen
    • 1
    • 2
    • 5
  • Elizabeth Watson
    • 1
    • 5
  • Elisa Wurmbach
    • 4
  • Stuart C. Sealfon
    • 1
    • 4
  • Andrew Brooks
    • 6
  • Stephen R. J. Salton
    • 1
    • 3
  1. 1.Fishberg Research Center for NeurobiologyMount Sinai School of MedicineNew York
  2. 2.Kastor Neurobiology of Aging LaboratoriesMount Sinai School of MedicineNew York
  3. 3.Department of GeriatricsMount Sinai School of MedicneNew York
  4. 4.Department of NeurologyMount Sinai School of MedicineNew York
  5. 5.Graduate Training Program in NeuroscienceMount Sinai School of MedicineNew York
  6. 6.Department of Environmental Medicine, Center for Functional GenomicsUniversity of Rochester Medical CenterRochester

Personalised recommendations