Advertisement

Neurochemical Research

, Volume 29, Issue 5, pp 1017–1038 | Cite as

Chemokines and Glial Cells: A Complex Network in the Central Nervous System

  • Elena AmbrosiniEmail author
  • Francesca Aloisi
Article

Abstract

Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.

Astrocytes chemokines glial activation inflammation microglia neurodegeneration oligodendrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    Rossi, D. and Zlotnik, A. 2000. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18:217–242.Google Scholar
  2. 2.
    IUIS/WHO Subcommittee on Chemokine Nomenclature. Chemokine/chemokine receptor nomenclature. J. Interf. Cyto. Res. 22:1067–1068.Google Scholar
  3. 3.
    Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., Burdick, M. D., and Strieter, R. M. 2000. CXC chemokines in angiogenesis. J. Leukoc. Biol. 68:1–8.Google Scholar
  4. 4.
    Horuk, R. 1999. Chemokine receptors and HIV-1: the fusion of two major research fields. Immunol. Today 20:89–94.Google Scholar
  5. 5.
    Murphy, P. M. 2000. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2:116–122.Google Scholar
  6. 6.
    Alcami, A. 2003. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3:36–50.Google Scholar
  7. 7.
    Gerard, C. and Rollins, B. J. 2001. Chemokines and disease. Nat. Immunol. 2:108–115.Google Scholar
  8. 8.
    Proudfoot, A. E., Power, C. A., Rommel, C., and Wells, T. N. 2003. Strategies for chemokine antagonists as therapeutics. Semin. Immunol. 15:57–65.Google Scholar
  9. 9.
    Rollins, B. J. 1997. Chemokines. Blood 90:909–928.Google Scholar
  10. 10.
    Mantovani, A. 1999. The chemokine system: redundancy for robust outputs. Immunol. Today 20:254–257.Google Scholar
  11. 11.
    Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., and Schall, T. J. 1997. A new class of membrane-bound chemokine with a CX(3)C motif. Nature 385:640–644.Google Scholar
  12. 12.
    Bajetto, A., Bonavia, R., Barbero, S., and Schettini, G. 2002. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J. Neurochem. 82:1311–1329.Google Scholar
  13. 13.
    Thelen, M. 2001. Dancing to the tune of chemokines. Nat. Immunol. 2:129–134.Google Scholar
  14. 14.
    Mellado, M., Rodriguez-frade, J. M., Aragay, A., DeIreal, G., Martin, A. M., Vilacoro, A. J., Serrano, A., Mayor, F., and Martineza, C. 1998. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161:805–813.Google Scholar
  15. 15.
    Ganju, R. K., Brubaker, S. A., Chernock, R. D., Avraham, S., and Groopman, J. E. 2000. β-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk. J. Biol. Chem. 275:17263–17268.Google Scholar
  16. 16.
    Ransohoff, R. M., Hamilton, T. A., Tani, M., Stoler, M. H., Shick, H. E., Major, J. A., Estes, M. L., Thomas, D. M., and Tuohy, V. K. 1993. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 7:592–600.Google Scholar
  17. 17.
    Hulkower, K., Brosnan, C. F., Aquino, D. A., Cammer, W., Kulshrestha, S., Guida, M. P., Rapoport, D. A., and Berman, J. W. 1993. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. 150:2525–2533.Google Scholar
  18. 18.
    Aloisi, F., Carè, A., Borsellino, G., Gallo, P., Rosa, S., Bassani, A., Cabibbo, A., Testa, U., Levi, G., and Peschle, C. 1992. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149:2358–2366.Google Scholar
  19. 19.
    Vanguri, P. and Farber, J. M. 1994. IFN and virus-inducible expression of an immediate early gene, crg-2/IP-10, and a delayed gene, I-A alpha in astrocytes and microglia. J. Immunol. 15:1411–1408.Google Scholar
  20. 20.
    Ransohoff, R. M. 1999. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J. Neuroimmunol. 98:57–68.Google Scholar
  21. 21.
    Asensio, V. C. and Campbell, I. L. 1999. Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci. 22:504–12.Google Scholar
  22. 22.
    Glabinski, A. R. and Ransohoff, R. M. 1999. Chemokines and chemokine receptors in CNS pathology. J. Neurovirol. 5:3–12.Google Scholar
  23. 23.
    Bajetto, A., Bonavia, R., Barbero, S., Florio, T., and Schettini, G. 2001. Chemokines and their receptors in the central nervous system. Front. Neuroendocrinol. 22:147–184.Google Scholar
  24. 24.
    Biber, K., Zuurman, M. W., Dijkstra, I. M., and Boddeke, H. W. 2002. Chemokines in the brain: neuroimmunology and beyond. Curr. Opin. Pharmacol. 2:63–68.Google Scholar
  25. 25.
    Cho, C. and Miller, R. J. 2002. Chemokine receptors and neural function. J. Neurovirol. 8:573–584.Google Scholar
  26. 26.
    Rezaie, P., Trillo-Pazos, G., Everall, I. P., and Male, D. K. 2002. Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS. Glia 37:64–75.Google Scholar
  27. 27.
    Robinson, S., Tani, M., Strieter, R. M., Ransohoff, R. M., and Miller, R. H. 1998. The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci. 18:10457–10463.Google Scholar
  28. 28.
    Filipovic, R., Jacovcevski, I., and Zecevic, N. 2003. GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev. Neurosci. 25:279–290.Google Scholar
  29. 29.
    Tsai, H. H., Frost, E., To, V., Robinson, S., Ffrench-Constant, C., Geertman, R., Ransohoff, R. M., and Miller, R. H. 2002. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383.Google Scholar
  30. 30.
    Ohtani, Y., Minami, M., Kawaguchi, N., Nishiyori, A., Yamamoto, J., Takami, S., and Satoh, M. 1998. Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells. Neurosci. Lett. 249:163–166.Google Scholar
  31. 31.
    Lazarini, F., Tham, T. N., Casanova, P., Arenzana-Seisdedos, F., and Dubois-Dalcq, M. 2003. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:139–148.Google Scholar
  32. 32.
    Rostasy, K., Egles, C., Chauhan, A., Kneissl, M., Bahrani, P., Yiannoutsos, C., Hunter, D. D., Nath, A., Hedreen, J. C., and Navia, B. A. 2003. SDF-1 alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J. Neuropathol. Exp. Neurol. 62:617–626.Google Scholar
  33. 33.
    Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H., Shinohara, T., and Honjo, T. 1995. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28:495–500.Google Scholar
  34. 34.
    Gleichmann, M., Gillen, C., Czardybon, M., Bosse, F., Greiner-Petter, R., Auer, J., and Muller, H. W. 2000. Cloning and characterization of SDF-1 gamma a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur. J. Neurosci. 12:1857–1866.Google Scholar
  35. 35.
    Tham, T. N., Lazarini, F., Franceschini, I. A., Lachapelle, F., Amara, A., and Dubois-Dalcq, M. 2001. Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur. J. Neurosci. 13:845–856.Google Scholar
  36. 36.
    Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., Bronson, R. T., and Springer, T. A. 1998. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95:9448–9453.Google Scholar
  37. 37.
    Lu, M., Grove, E. A., and Miller, R. J. 2002. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc. Natl. Acad. Sci. U. S. A. 99:7090–7095.Google Scholar
  38. 38.
    Bagri, A., Gurney, T., He, X. P., Zou, Y. R., Littman, D. R., Tessier-Lavigne, M., and Pleasure, S. J. 2002. The chemokine SDF1 regulates migration of dentate granule cells. Development 129:4249–4260.Google Scholar
  39. 39.
    Xiang, Y., Li, Y., Zhang, Z., Cui, K., Wang, S., Yuan, X. B., Wu, C. P., Poo, M. M., and Duan, S. M. 2002. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat. Neurosci. 5:843–848.Google Scholar
  40. 40.
    Chalasani, S. H., Baribaud, F., Coughlan, C. M., Sunshine, M. J., Lee, V. M. Y., Doms, R. W., Littman, D. R., and Raper, J. A. 2003. The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J. Neurosci. 23:4601–4612.Google Scholar
  41. 41.
    Arakawa, Y., Bito, H., Furuyashiki, T., Tsuji, T., Takemoto-Kimura, S., Kimura, K., Nozaki, K., Hashimoto, N., and Narumiya, S. 2003. Control of axon elongation via an SDF-1 alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J. Cell Biol. 161:381–391.Google Scholar
  42. 42.
    Vlahakis, S. R., Villasis-Keever, A., Gomez, T., Vanegas, M., Vlahakis, N., and Paya C. V. 2002. G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. J. Immunol. 169:5546–5554.Google Scholar
  43. 43.
    Bajetto, A., Barbero, S., Bonavia, R., Piccioli, P., Pirani, P., Florio, T., and Schettini, G. 2001. Stromal cell-derived factor-1 alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J. Neurochem. 77:1226–1236.Google Scholar
  44. 44.
    Pan, Y., Lloyd, C., Zhou, H., Dolich, S., Deeds, J., Gonzalo, J. A., Vath, J., Gosselin, M., Ma, J., Dussault, B., Woolf, E., Alperin, G., Culpepper, J., Gutierrez-Ramos, J. C., and Gearing, D. 1997. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617.Google Scholar
  45. 45.
    Nishiyori, A., Minami, M., Ohtani, Y., Takami, S., Yamamoto, J., Kawaguchi, N., Kume, T., Akaike, A., and Satoh, M. 1998. Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett. 429:167–172.Google Scholar
  46. 45.
    Meucci, O., Fatatis, A., Simen, A. A., and Miller, R. J. 2000. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA 97:8075–8080.Google Scholar
  47. 47.
    Hatori, K., Nagai, A., Heisel, R., Ryu, J. K., and Kim, S. U. 2002. Fractalkine and fractalkine receptors in human neurons and glial cells. J. Neurosci. Res. 69:418–426.Google Scholar
  48. 48.
    Harrison, J. K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R. K., Streit, W. J., Salafranca, M. N., Adhikari, S., Thompson, D. A., Botti, P., Bacon, K. B., and Feng, L. 1998. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 95:10896–10901.Google Scholar
  49. 49.
    Maciejewski-Lenoir, D., Chen, S., Feng, L., Maki, R., and Bacon, K. B. 1999. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol. 163:1628–1635.Google Scholar
  50. 50.
    Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., and Littman, D. R. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:4106–4114.Google Scholar
  51. 51.
    Cook, D. N., Chen, S. C., Sullivan, L. M., Manfra, D. J., Wiekowski, M. T., Prosser, D. M., Vassileva, G., and Lira, S. A. 2001. Generation and analysis of mice lacking the chemokine fractalkine. Mol. Cell. Biol. 21:3159–3165.Google Scholar
  52. 52.
    Rezaie, P. and Male, D. 1999. Colonization of the developing human brain and spinal cord by microglia: a review. Microsc. Res. Tech. 45:359–382.Google Scholar
  53. 53.
    Lawson, L. J., Perry, V. H., and Gordon, S. 1992. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415.Google Scholar
  54. 54.
    Bakhiet, M., Tjernlund, A., Mousa, A., Gad, A., Stromblad, S., Kuziel, W. A., Seiger, A., and Andersson, J. 2001. RANTES promotes growth and survival of human first-trimester forebrain astrocytes. Nat. Cell Biol. 3:150–157.Google Scholar
  55. 55.
    Giovannelli, A., Limatola, C., Ragozzino, D., Mileo, A. M., Ruggieri, A., Ciotti, M. T., Mercanti, D., Santoni, A., and Eusebi, F. 1998. CXC chemokines interleukin-8 (IL-8) and growth-related gene product alpha (GROalpha) modulate Purkinje neuron activity in mouse cerebellum. J. Neuroimmunol. 92:122–132.Google Scholar
  56. 56.
    Limatola, C., Giovannelli, A., Maggi, L., Ragozzino, D., Castellani, L., Ciotti, M. T., Vacca, F., Mercanti, D., Santoni, A., and Eusebi F. 2000. SDF-1alpha-mediated modulation of synaptic transmission in rat cerebellum. Eur. J. Neurosci. 12:2497–2504.Google Scholar
  57. 57.
    Meucci, O., Fatatis, A., Simen, A. A., Bushell, T. J., Gray, P. W., and Miller, R. J. 1998. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA 95:14500–14505.Google Scholar
  58. 58.
    Puma, C., Danik, M., Quirion, R., Ramon, F., and Williams, S. 2001. The chemokine interleukin-8 acutely reduces Ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J. Neurochem. 78:960–971.Google Scholar
  59. 59.
    Oh, S. B., Endoh, T., Simen, A. A., Ren, D., and Miller, R. J. 2002. Regulation of calcium currents by chemokines and their receptors. J. Neuroimmunol. 123:66–75.Google Scholar
  60. 60.
    Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. 2001. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4:702–710.Google Scholar
  61. 61.
    Middleton, J., Patterson, A. M., Gardner, L., Schmutz, C., and Ashton, B. A. 2002. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 100:3853–3860.Google Scholar
  62. 62.
    Horuk, R., Martin, A., Hesselgesser, J., Hadley, T., Lu, Z. H., Wang, Z. X., and Peiper, S. C. 1996. The Duffy antigen receptor for chemokines: structural analysis and expression in the brain. J. Leukoc. Biol. 59:29–38.Google Scholar
  63. 63.
    Butcher, E. C., Williams, M., Youngman, K., Rott, L., and Briskin, M. 1999. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72:209–253.Google Scholar
  64. 64.
    Laudanna, C., Kim, J. Y., Constantin, G., and Butcher, E. 2002. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186:37–46.Google Scholar
  65. 65.
    Piccio, L., Rossi, B., Scarpini, E., Laudanna, C., Giagulli, C., Issekutz, A. C., Vestweber, D., Butcher, E. C., and Constantin, G. 2002. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J. Immunol. 168:1940–1949.Google Scholar
  66. 66.
    Yednock, T. A., Cannon, C., Fritz, L. C., Sanchez-Madrid, F., Steinman, L., and Karin, N. 1992. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66.Google Scholar
  67. 67.
    Kim, J. S., Gautam, S. C., Chopp, M., Zaloga, C., Jones, M. L., Ward, P. A., and Welch, K. M. 1995. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J. Neuroimmunol. 56:127–134.Google Scholar
  68. 68.
    Andjelkovic, A. V., Spencer, D. D., and Pachter, J. S. 1999. Visualization of chemokine binding sites on human brain microvessels. J. Cell Biol. 145:403–12.Google Scholar
  69. 69.
    Glabinski, A. R. and Ransohoff, R. M. 1999. Sentries at the gate: chemokines and the blood-brain barrier. J. Neurovirol. 5:623–634.Google Scholar
  70. 70.
    Shukaliak, J. A. and Dorovini-Zis, K. 2000. Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J. Neuropathol. Exp. Neurol. 59:339–352.Google Scholar
  71. 71.
    Alt, C., Laschinger, M., and Engelhardt, B. 2002. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32:2133–2144.Google Scholar
  72. 72.
    Murphy, C. A., Hoek, R. M., Wiekowski, M. T., Lira, S. A., and Sedgwick, J. D. 2002. Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. J. Immunol. 169:7054–7062.Google Scholar
  73. 73.
    Jiang, Y., Salafranca, M. N., Adhikari, S., Xia, Y., Feng, L., Sonntag, M. K., deFiebre, C. M., Pennell, N. A., Streit, W. J., and Harrison, J. K. 1998. Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J. Neuroimmunol. 86:1–12.Google Scholar
  74. 74.
    Bajetto, A., Bonavia, R., Barbero, S., Piccioli, P., Costa, A., Florio, T., and Schettini, G. 1999. Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J. Neurochem. 73:2348–2357.Google Scholar
  75. 75.
    Odemis, V., Moepps, B., Gierschik, P., and Engele, J. 2002. Interleukin-6 and cAMP induce stromal cell-derived factor-1 chemotaxis in astroglia by up-regulating CXCR4 cell surface expression. Implications for brain inflammation. J. Biol. Chem. 277:39801–39808.Google Scholar
  76. 76.
    Han, Y., He, T., Huang, D. R., Pardo, C. A., and Ransohoff, R. M. 2001. TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. J. Clin. Invest. 108:425–435.Google Scholar
  77. 77.
    Han, Y., Wang, J., He, T., and Ransohoff, R. M. 2001. TNF-alpha down-regulates CXCR4 expression in primary murine astrocytes. Brain Res. 888:1–10.Google Scholar
  78. 78.
    Barbero, S., Bonavia, R., Bajetto, A., Porcile, C., Pirani, P., Ravetti, J. L., Zona, G. L., Spaziante, R., Florio, T., and Schettini, G. 2003. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res. 63:1969–1974.Google Scholar
  79. 79.
    Pereira, C. F., Middel, J., Jansen, G., Verhoef, J., and Nottet, H. S. 2001. Enhanced expression of fractalkine in HIV-1 associated dementia. J. Neuroimmunol. 115:168–175.Google Scholar
  80. 80.
    Hughes, P. M., Botham, M. S., Frentzel, S., Mir, A., and Perry, V. H. 2002. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37:314–327.Google Scholar
  81. 81.
    Erichsen, D., Lopez, A. L., Peng, H., Niemann, D., Williams, C., Bauer, M., Morgello, S., Cotter, R. L., Ryan, L. A., Ghorpade, A., Gendelman, H. E., and Zheng, J. 2003. Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J. Neuroimmunol. 138:144–155.Google Scholar
  82. 82.
    Yoshida, H., Imaizumi, T., Fujimoto, K., Matsuo, N., Kimura, K., Cui, X. F., Matsumiya, T., Tanji, K., Shibata, T., Tamo, W., Kumagai, M., and Satoh, K. 2001. Synergistic stimulation, by tumor necrosis factor-alpha and interferon-gamma, of fractalkine expression in human astrocytes. Neurosci. Lett. 303:132–136.Google Scholar
  83. 83.
    Glabinski, A. R., Tani, M., Strieter, R. M., Tuohy, V. K., and Ransohoff, R. M. 1997. Synchronous synthesis of alpha-and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. J. Pathol. 150:617–630.Google Scholar
  84. 84.
    Nygardas, P. T., Maatta, J. A., and Hinkkanen, A. E. 2000. Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur. J. Immunol. 30:1911–1918.Google Scholar
  85. 85.
    Janabi, N., Hau, I., and Tardieu, M. 1999. Negative feedback between prostaglandin and alpha-and beta-chemokine synthesis in human microglial cells and astrocytes. J. Immunol. 162:1701–1706.Google Scholar
  86. 86.
    Kielian, T., Barry, B., and Hickey, W. F. 2001. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J. Immunol. 166:4634–4643.Google Scholar
  87. 87.
    Luo, Y., Fischer, F. R., Hancock, W. W., and Dorf, M. E. 2000. Macrophage inflammatory protein-2 and KC induce chemokine production by mouse astrocytes. J. Immunol. 165:4015–4023.Google Scholar
  88. 88.
    Luo, Y., Berman, M. A., Zhai, Q. W., Fischer, F. R., Abromson-Leeman, S. R., Zhang, Y., Kuziel, W. A., Gerard, C., and Dorf, M. E. 2002. RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes. Glia 39:19–30.Google Scholar
  89. 89.
    Otto, V. I., Gloor, S. M., Frentzel, S., Gilli, U., Ammann, E., Hein, A. E., Folkers, G., Trentz, O., Kossmann, T., and Morganti-Kossmann, M. C. 2002. The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by SRC tyrosine kinases and p42/44 mitogen-activated protein kinase. J. Neurochem. 80:824–834.Google Scholar
  90. 90.
    Oh, J. W., Schwiebert, L. M., and Benveniste, E. N. 1999. Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J. Neurovirol. 5:82–94.Google Scholar
  91. 91.
    Cota, M., Kleinschmidt, A., Ceccherini-Silberstein, F., Aloisi, F., Mengozzi, M., Mantovani, A., Brack-Werner, R., and Poli, G. 2000. Upregulated expression of interleukin-8, RANTES and chemokine receptors in human astrocytic cells infected with HIV-1. J. Neurovirol. 6:75–83.Google Scholar
  92. 92.
    Kutsch, O., Oh, J., Nath, A., and Benveniste, E. N. 2000. Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J. Virol. 74:9214–9221.Google Scholar
  93. 93.
    Cheeran, M. C., Hu, S., Yager, S. L., Gekker, G., Peterson, P. K. and Lokensgard, J. R. 2001. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J. Neurovirol. 7:135–147.Google Scholar
  94. 94.
    Jauneau, A. C., Ischenko, A., Chan, P., and Fontaine, M. 2003. Complement component anaphylatoxins upregulate chemokine expression by human astrocytes. FEBS Lett. 537:17–22.Google Scholar
  95. 95.
    Guillemin, G. J., Croitoru-Lamoury, J., Dormont, D., Armati, P. J., and Brew, B. J. 2003. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 41:371–81.Google Scholar
  96. 96.
    Croitoru-Lamoury, J., Guillemin, G. J., Boussin, F. D., Mognetti, B., Gigout, L. I., Cheret, A., Vaslin, B., Le Grand, R., Brew, B. J., and Dormont, D. 2003. Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF alpha and IFN gamma in CXCR4 and CCR5 modulation. Glia 41:354–370.Google Scholar
  97. 97.
    Flynn, G., Maru, S., Loughlin, J., Romero, I. A., and Male, D. 2003. Regulation of chemokine receptor expression in human microglia and astrocytes. J. Neuroimmunol. 136:84–93.Google Scholar
  98. 98.
    Heesen, M., Tanabe, S., Berman, M. A., Yoshizawa, I., Luo, Y., Kim, R. J., Post, T. W., Gerard, C., and Dorf, M. E. 1996. Mouse astrocytes respond to the chemokines MCP-1 and KC, but reverse transcriptase-polymerase chain reaction does not detect mRNA for the KC or new MCP-1 receptor. J. Neurosci. Res. 45:382–391.Google Scholar
  99. 99.
    Tani, M., Glabinski, A. R., Tuohy, V. K., Stoler, M. H., Estes, M. L., and Ransohoff, R. M. 1996. In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am. J. Pathol. 148:889–896.Google Scholar
  100. 100.
    Hesselgesser, J. and Horuk, R. 1999. Chemokine and chemokine receptor expression in the central nervous system. J. Neurovirol. 5:13–26.Google Scholar
  101. 101.
    Sorensen, T. L., Tani, M., Jensen, J., Pierce, V., Lucchinetti, C., Folcik, V. A., Qin, S., Rottman, J., Sellebjerg, F., Strieter, R. M., Frederiksen, J. L., and Ransohoff, R. M. 1999. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103:807–815.Google Scholar
  102. 102.
    Balashov, K. E., Rottman, J. B., Weiner, H. L., and Hancock W. W. 1999. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. U. S. A. 96:6873–6878.Google Scholar
  103. 103.
    Simpson, J. E., Newcombe, J., Cuzner, M. L., and Woodroofe, M. N. 2000. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 26:133–142.Google Scholar
  104. 104.
    Lane, T. E., Asensio, V. C., Yu. N., Paoletti, A. D., Campbell, I. L., and Buchmeier, M. J. 1998. Dynamic regulation of alpha-and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease. J. Immunol. 160:970–978.Google Scholar
  105. 105.
    Sauder, C., Hallensleben, W., Pagenstecher, A., Schneckenburger, S., Biro, L., Pertlik, D., Hausmann, J., Suter, M., and Staeheli, P. 2000. Chemokine gene expression in astrocytes of Borna disease virus-infected rats and mice in the absence of inflammation. J. Virol. 74:9267–9280.Google Scholar
  106. 106.
    Strack, A., Asensio, V. C., Campbell, I. L., Schluter, D., and Deckert, M. 2002. Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-gamma. Acta Neuropathol. (Berlin) 103:458–468.Google Scholar
  107. 107.
    Liu, M. T., Chen, B. P., Oertel, P., Buchmeier, M. J., Armstrong, D., Hamilton, T. A., and Lane, T. E. 2000. The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J. Immunol. 165:2327–2330.Google Scholar
  108. 108.
    Fisher, S. N., Vanguri, P., Shin, H. S., and Shin, M. L. 1995. Regulatory mechanisms of murantes and CRG-2 chemokine gene induction in central nervous system glial cells by virus. Brain Behav. Immun. 9:331–344.Google Scholar
  109. 109.
    Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., Gladue, R. P., Lin, W., Boyd, J. G., Moser, B., Wood, D. E., Sahagan, B. G., and Neote, K. 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 187:2009–2021.Google Scholar
  110. 110.
    Hua, L. L. and Lee, S. C. 2000. Distinct patterns of stimulus-inducible chemokine mRNA accumulation in human fetal astrocytes and microglia. Glia 30:74–81.Google Scholar
  111. 111.
    Asensio, V. C., Maier, J., Milner, R., Boztug, K., Kincaid, C., Moulard, M., Phillipson, C., Lindsley, K., Krucker, T., Fox, H. S., and Campbell, I. L. 2001. Interferon-independent, human immunodeficiency virus type 1 gp120-mediated induction of CXCL10/IP-10 gene expression by astrocytes in vivo and in vitro. J. Virol. 75:7067–7077.Google Scholar
  112. 112.
    Palma, J. P. and Kim, B. S. 2001. Induction of selected chemokines in glial cells infected with Theiler's virus. J. Neuroimmunol. 117:166–170.Google Scholar
  113. 113.
    Salmaggi, A., Gelati, M., Dufour, A., Corsini, E., Pagano, S., Baccalini, R., Ferrero, E., Scabini, S., Silei, V., Ciusani, E., and De Rossi, M. 2002. Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J. Interferon Cytokine Res. 22:631–640.Google Scholar
  114. 114.
    Biber, K., Dijkstra, I., Trebst, C., De Groot, C. J., Ransohoff, R. M., and Boddeke, H. W. 2002. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience 112:487–497.Google Scholar
  115. 115.
    Calvo, C. F., Yoshimura, T., Gelman, M., and Mallat, M. 1996. Production of monocyte chemotactic protein-1 by rat brain macrophages. Eur. J. Neurosci. 8:1725–1734.Google Scholar
  116. 116.
    Gourmala, N. G., Buttini, M., Limonta, S., Sauter, A., and Boddeke, H. W. 1997. Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain: effects of ischemia and peripheral lipopolysaccharide administration. J. Neuroimmunol. 74:35–44.Google Scholar
  117. 117.
    Glabinski, A. R., Balasingam, V., Tani, M., Kunkel, S. L., Strieter, R. M., Yong, V. W., and Ransohoff, R. M. 1996. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J. Immunol. 156:4363–4368.Google Scholar
  118. 118.
    Berman, J. W., Guida, M. P., Warren, J., Amat, J., and Brosnan, C. F. 1996. Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J. Immunol. 156:3017–3023.Google Scholar
  119. 119.
    Simpson, J. E., Newcombe, J., Cuzner, M. L., and Woodroofe, M. N. 1998. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J. Neuroimmunol. 84:238–249.Google Scholar
  120. 120.
    McManus, C., Berman, J. W., Brett, F. M., Staunton, H., Farrell, M., and Brosnan, C. F. 1998. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol. 86:20–29.Google Scholar
  121. 121.
    Diab, A., Abdalla, H., Li, H. L., Shi, F. D., Zhu, J., Hojberg, B., Lindquist, L., Wretlind, B., Bakhiet, M., and Link, H. 1999. Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect. Immun. 67:2590–2601.Google Scholar
  122. 122.
    Van Der Voorn, P., Tekstra, J., Beelen, R. H., Tensen, C. P., Van Der Valk, P., and De Groot, C. J. 1999. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am. J. Pathol. 154:45–51.Google Scholar
  123. 123.
    Che, X., Ye, W., Panga, L., Wu, D. C., and Yang, G. Y. 2001. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 902:171–177.Google Scholar
  124. 124.
    Weiss, J. M., Downie, S. A., Lyman, W. D., and Berman, J. W. 1998. Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J. Immunol. 161:6896–6903.Google Scholar
  125. 125.
    Miyagishi, R., Kikuchi, S., Takayama, C., Inoue, Y., and Tashiro, K. 1997. Identification of cell types producing RANTES, MIP-1-alpha and MIP-1-beta in rat experimental autoimmune encephalomyelitis by in situ hybridization. J. Neuroimmunol. 77:17–26.Google Scholar
  126. 126.
    Boven, L. A., Montagne, L., Nottet, H. S. L. M., and De Groot, C. I. A. 2000. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), MIP-1 beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 122:257–263.Google Scholar
  127. 127.
    Hurwitz, A. A., Lyman, W. D., and Berman, J. W. 1995. Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1. J. Neuroimmunol. 57:193–198.Google Scholar
  128. 128.
    Hayashi, M., Luo, Y., Laning, J., Strieter, R. M., and Dorf, M. E. 1995. Production and function of monocyte chemoattractant protein-1 and other beta-chemokines in murine glial cells. J. Neuroimmunol. 60:143–150.Google Scholar
  129. 129.
    Barnes, D. A., Huston, M., Holmes, R., Benveniste, E. N., Yong, V. W., Scholz, P., and Perez, H. D. 1996. Induction of RANTES expression by astrocytes and astrocytoma cell lines. J. Neuroimmunol. 71:207–214.Google Scholar
  130. 130.
    Conant, K., Garzino-Demo, A., Nath, A., Mcarthur, J. C., Halliday, W., Power, C., Gallo, R. C., and Major, E. O. 1998. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl. Acad. Sci. USA 95:3117–3121.Google Scholar
  131. 131.
    Johnstone, M., Gearing, A. J. H., and Miller, K. M. 1999. A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93:182–193.Google Scholar
  132. 132.
    McManus, C. M., Weidenheim, K., Woodman, S. E., Nunez, J., Hesselgesser, J., Nath, A., and Berman, J. W. 2000. Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, Tat, and chemokine autoregulation. Am. J. Pathol. 156:1441–1453.Google Scholar
  133. 133.
    Rah, J. C., Kim, H. S., Kim, S. S., Bach, J. H., Kim, Y. S., Park, C. H., Seo, J. H., Jeong, S. J., and Suh, Y. H. 2001. Effects of carboxyl-terminal fragment of Alzheimer's amyloid precursor protein and amyloid beta-peptide on the production of cytokines and nitric oxide in glial cells. FASEB J. 15:1463–1465.Google Scholar
  134. 134.
    Li, Q. Q. and Bever, C. T. 2001. Th1 cytokines stimulate RANTES chemokine secretion by human astroglial cells depending on de novo transcription. Neurochem. Res. 26:125–133.Google Scholar
  135. 135.
    Smits, H. A., Rijsmus, A., van Loon, J. H., Wat, J. W., Verhoef, J., Boven, L. A., and Nottet, H. S. 2002. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J. Neuroimmunol. 127:160–168.Google Scholar
  136. 136.
    Panenka, W., Jijon, H., Herx, L. M., Armstrong, J. N., Feighan, D., Wei, T., Yong, V. W., Ransohoff, R. M., and MacVicar, B. A. 2001. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci. 21:7135–7142.Google Scholar
  137. 137.
    Andjelkovic, A. V., Song, L., Dzenko, K. A., Cong, H., and Pachter, J. S. 2002. Functional expression of CCR2 by human fetal astrocytes. J. Neurosci. Res. 70:219–231.Google Scholar
  138. 138.
    Banisadr, G., Queraud-Lesaux, F., Boutterin, M. C., Pelaprat, D., Zalc, B., Rostene, W., Haour, F., and Parsadaniantz, S. M. 2002. Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J. Neurochem. 81:257–269.Google Scholar
  139. 139.
    Jee, Y., Yoon, W. K., Okura, Y., Tanuma, N., and Matsumoto, Y. 2002. Upregulation of monocyte chemotactic protein-1 and CC chemokine receptor 2 in the central nervous system is closely associated with relapse of autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 128:49–57.Google Scholar
  140. 140.
    Eugenin, E. A., D'Aversa, T. G., Lopez, L., Calderon, T. M., and Berman, J. W. 2003. MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J. Neurochem. 85:1299–1311.Google Scholar
  141. 141.
    Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C., and Husemann, J. 2003. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9:453–457.Google Scholar
  142. 142.
    Dorf, M. E., Berman, M. A., Tanabe, S., Heesen, M., and Luo, Y. 2000. Astrocytes express functional chemokine receptors. J. Neuroimmunol. 111:109–121.Google Scholar
  143. 143.
    Cowell, R. M., Xu, H., Galasso, J. M., and Silverstein, F. S. 2002. Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke. 33:795–801.Google Scholar
  144. 144.
    Zuurman, M. W., Heeroma, J., Brouwer, N., Boddeke, H. W., and Biber, K. 2003. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo. Glia 41:327–336.Google Scholar
  145. 145.
    Ghirnikar, R. S., Lee, Y. L., He, T. R., and Eng, L. F. 1996. Chemokine expression in rat stab wound brain injury. J. Neurosci. Res. 46:727–733.Google Scholar
  146. 146.
    Xia, M. Q., Qin, S. X., Wu, L. J., Mackay, C. R., and Hyman, B. T. 1998. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. Am. J. Pathol. 153:31–37.Google Scholar
  147. 147.
    Ambrosini, E., Columba-Cabezas, S., Serafini, B., Muscella, A., and Aloisi, F. 2003. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 41:290–300.Google Scholar
  148. 148.
    Serafini, B., Columba-Cabezas, S., Di Rosa, F., and Aloisi, F. 2000. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157:1991–2002.Google Scholar
  149. 149.
    Dieu-Nosjean, M. C., Massacrier, C., Homey, B., Vanbervliet, B., Pin, J. J., Vicari, A., Lebecque, S., Dezutter-Dambuyant, C., Schmitt, D., Zlotnik, A., and Caux, C. 2000. Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J. Exp. Med. 192:705–718.Google Scholar
  150. 150.
    Streit, W. J. 2002. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139.Google Scholar
  151. 151.
    Aloisi, F. 2001. Immune function of microglia. Glia 36:165–179.Google Scholar
  152. 152.
    Nguyen, M. D., Julien, J. P., and Rivest, S. 2002. Innate immunity: the missing link in neuroprotection and neurodegeneration?. Nat. Rev. Neurosci. 3:216–227.Google Scholar
  153. 153.
    Ehrlich, L. C., Hu, S., Sheng, W. S., Sutton, R. L., Rockswold, G. L., Peterson, P. K., and Chao, C. C. 1998. Cytokine regulation of human microglial cell IL-8 production. J. Immunol. 160:1944–1948.Google Scholar
  154. 154.
    Hu, S., Chao, C. C., Ehrlich, L. C., Sheng, W. S., Sutton, R. L., Rockswold, G. L., and Peterson, P. K. 1999. Inhibition of microglial cell RANTES production by IL-10 and TGF-beta. J. Leukoc. Biol. 65:815–821.Google Scholar
  155. 155.
    Delgado, M., Jonakait, G. M., and Ganea, D. 2002. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39:148–161.Google Scholar
  156. 156.
    Moller, T., Hanisch, U. K., and Ransom, B. R. 2000. Thrombin-induced activation of cultured rodent microglia. J. Neurochem. 75:1539–1547.Google Scholar
  157. 157.
    Hausler, K. G., Prinz, M., Nolte, C., Weber, J. R., Schumann, R. R., Kettenmann, H., and Hanisch, U. K. 2002. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide-and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur. J. Neurosci. 16:2113–2122.Google Scholar
  158. 158.
    Lipovsky, M. M., Gekker, G., Hu, S., Ehrlich, L. C., Hoepelman, A. I., and Peterson, P. K. 1998. Cryptococcal glucuronoxylomannan induces interleukin (IL)-8 production by human microglia but inhibits neutrophil migration toward IL-8. J. Infect. Dis. 177:260–263.Google Scholar
  159. 159.
    Lee, Y. B., Nagai, A., and Kim, S. U. 2002. Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 69:94–103.Google Scholar
  160. 160.
    Boddeke, E. W., Meigel, I., Frentzel, S., Biber, K., Renn, L. Q., and Gebicke-Harter, P. 1999. Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur. J. Pharmacol. 374:309–313.Google Scholar
  161. 161.
    Tarozzo, G., Campanella, M., Ghiani, M., Bulfone, A., and Beltramo, M. 2002. Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur. J. Neurosci. 15:1663–1668.Google Scholar
  162. 162.
    Boehme, S. A., Lio, F. M., Maciejewski-Lenoir, D., Bacon, K. B., and Conlon, P. J. 2000. The chemokine fractalkine inhibits Fasmediated cell death of brain microglia. J. Immunol. 165:397–403.Google Scholar
  163. 163.
    Zujovic, V., Benavides, J., Vige, X., Carter, C., and Taupin, V. 2000. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315.Google Scholar
  164. 164.
    Lokensgard, J. R., Hu, S., Sheng, W., vanOijen, M., Cox, D., Cheeran, M. C., and Peterson, P. K. 2001. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J. Neurovirol. 7:208–219.Google Scholar
  165. 165.
    D'Aversa, T. G., Weidenheim, K. M., and Berman, J. W. 2002. CD40-CD40L interactions induce chemokine expression by human microglia: implications for human immunodeficiency virus encephalitis and multiple sclerosis. Am. J. Pathol. 160:559–567.Google Scholar
  166. 166.
    Rappert, A., Biber, K., Nolte, C., Lipp, M., Schubel, A., Lu, B., Gerard, N. P., Gerard, C., Boddeke, H. W., and Kettenmann, H. 2002. Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl-current and chemotaxis in murine microglia. J. Immunol. 168:3221–3226.Google Scholar
  167. 167.
    McManus, C. M., Brosnan, C. F., and Berman, J. W. 1998. Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J. Immunol. 160:1449–1455.Google Scholar
  168. 168.
    Si, Q., Cosenza, M., Zhao, M. L., Goldstein, H., and Lee, S. C. 2002. GM-CSF and M-CSF modulate beta-chemokine and HIV-1 expression in microglia. Glia 39:174–183.Google Scholar
  169. 169.
    Kim, M. O., Si, Q., Zhou, J. N., Pestell, R. G., Brosnan, C. F., Locker, J., and Lee, S. C. 2002. Interferon-beta activates multiple signaling cascades in primary human microglia. J. Neurochem. 81(6):1361–71.Google Scholar
  170. 170.
    Vago, L., Nebuloni, M., Bonetto, S., Pellegrinelli, A., Zerbi, P., Ferri, A., Lavri, E., Capra, M., Grassi, M. P., and Costanzi, G. 2001. Rantes distribution and cellular localization in the brain of HIV-infected patients. Clin. Neuropathol. 20:139–145.Google Scholar
  171. 171.
    Si, Q., Kim, M. O., Zhao, M. L., Landau, N. R., Goldstein, H., and Lee, S. 2002. Vpr-and Nef-dependent induction of RANTES/CCL5 in microglial cells. Virology. 301:342–353.Google Scholar
  172. 172.
    Ishizuka, K., Kimura, T., Igata-yi, R., Katsuragi, S., Takamatsu, J., and Miyakawa, T. 1997. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer's disease. Psychiatry Clin. Neurosci. 51:135–138.Google Scholar
  173. 173.
    Meda, L., Bernasconi, S., Bonaiuto, C., Sozzani, S., Zhou, D., Otvos, L., Jr., Mantovani, A., Rossi, F., and Cassatella, M. A. 1996. Beta-amyloid (25-35) peptide and IFN-gamma synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J. Immunol. 157:1213–1218.Google Scholar
  174. 174.
    McManus, C. M., Liu, J. S., Hahn, M. T., Hua, L. L., Brosnan, C. F., Berman, J. W., and Lee, S. C. 2000. Differential induction of chemokines in human microglia by type I and II interferons. Glia 29:273–280.Google Scholar
  175. 175.
    Szczepanik, A. M., Funes, S., Petko, W., and Ringheim, G. E. 2001. IL-4, IL-10 and IL-13 modulate A beta(1-42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J. Neuroimmunol. 113:49–62.Google Scholar
  176. 176.
    Columba-Cabezas, S., Serafini, B., Ambrosini, E., Sanchez, M., Penna, G., Adorini, L., and Aloisi, F. 2002. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J. Neuroimmunol. 130:10–21.Google Scholar
  177. 177.
    Moser, B. and Loetscher, P. 2001. Lymphocyte traffic control by chemokines. Nat. Immunol. 2:123–128.Google Scholar
  178. 178.
    Hjelmstrom, P. 2001. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 69:331–339.Google Scholar
  179. 179.
    Columba-Cabezas, S., Serafini, B., Ambrosini, E., and Aloisi, F. 2003. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol. 13:38–51.Google Scholar
  180. 180.
    He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C. R., Sodroski, J., and Gabuzda, D. 1997. CCR3 and CCR5 are coreceptors for HIV-1 infection of microglia. Nature. 385:645–649.Google Scholar
  181. 181.
    Ghorpade, A., Xia, M. Q., Hyman, B. T., Persidsky, Y., Nukuna, A., Bock, P., Che, M., Limoges, J., Gendelman, H. E., and Mackay, C. R. 1998. Role of the beta-chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia. J. Virol. 72:3351–3361.Google Scholar
  182. 182.
    Albright, A. V., Shieh, J. T., Itoh, T., Lee, B., Pleasure, D., O'Connor, M. J., Doms, R. W., and Gonzalez-Scarano, F. 1999. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 73:205–213.Google Scholar
  183. 183.
    Xia, M. Q. and Hyman, B. T. 1999. Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J. Neurovirol. 5:32–41.Google Scholar
  184. 184.
    van der Meer, P., Ulrich, A. M., Gonzalez-Scarano, F., and Lavi, E. 2000. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp. Mol. Pathol. 69:192–201.Google Scholar
  185. 185.
    Trebst, C., Sorensen, T. L., Kivisakk, P., Cathcart, M. K., Hesselgesser, J., Horuk, R., Sellebjerg, F., Lassmann, H., and Ransohoff, R. M. 2001. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159:1701–1710.Google Scholar
  186. 186.
    Simpson, J., Rezaie, P., Newcombe, J., Cuzner, M. L., Male, D., and Woodroofe, M. N. 2000. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J. Neuroimmunol. 108(1-2):192–200.Google Scholar
  187. 187.
    Cross, A. K. and Woodroofe, M. N. 1999. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J. Neurosci. Res. 55:17–23.Google Scholar
  188. 188.
    Trebst, C., Staugaitis, S. M., Kivisakk, P., Mahad, D., Cathcart, M. K., Tucky, B., Wei, T., Rani, M. R., Horuk, R., Aldape, K. D., Pardo, C. A., Lucchinetti, C. F., Lassmann, H., and Ransohoff, R. M. 2003. CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am. J. Pathol. 162:427–438.Google Scholar
  189. 189.
    Abbadie, C., Lindia, J. A., Cumiskey, A. M., Peterson, L. B., Mudgett, J. S., Bayne, E. K., DeMartino, J. A., MacIntyre, D. E., and Forrest, M. J. 2003. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. USA 100:7947–7952.Google Scholar
  190. 190.
    Tsai, H. H. and Miller, R. H. 2002. Glial cell migration directed by axon guidance cues. Trends Neurosci. 25:173–175; discussion 175-176.Google Scholar
  191. 191.
    Wu, Q., Miller, R. H., Ransohoff, R. M., Robinson, S., Bu, J., and Nishiyama, A. 2000. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J. Neurosci. 20:2609–2617.Google Scholar
  192. 192.
    Nguyen, D. and Stangel, M. 2001. Expression of the chemokine receptors CXCR1 and CXCR2 in rat oligodendroglial cells. Brain Res. Dev. Brain Res. 128:77–81.Google Scholar
  193. 193.
    Wingerchuk, D. M., Lucchinetti, C. F., and Noseworthy, J. H. 2001. Multiple sclerosis: current pathophysiological concepts. Lab. Invest. 81:263–281.Google Scholar
  194. 194.
    Miyagishi, R., Kikuchi, S., Fukazawa, T., and Tashiro, K. 1995. Macrophage inflammatory protein-1 alpha in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J. Neurol. Sci. 129:223–227.Google Scholar
  195. 195.
    Franciotta, D., Martino, G., Zardini, E., Furlan, R., Bergamaschi, R., Andreoni, L., and Cosi, V. 2001. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J. Neuroimmunol. 115:192–198.Google Scholar
  196. 196.
    Sörensen, T. L., Sellebjerg, F., Jensen, C. V., Strieter, R. M., and Ransohoff, R. M. 2001. Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis. Eur. J. Neurol. 8:665–672.Google Scholar
  197. 197.
    Pashenkov, M., Soderstrom, M., and Link, H. 2003. Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol. 135:154–160.Google Scholar
  198. 198.
    Giunti, D., Borsellino, G., Benelli, R., Marchese, M., Capello, E., Valle, M. T., Pedemonte, E., Noonan, D., Albini, A., Bernardi, G., Mancardi, G. L., Battistini, L., and Uccelli, A. 2003. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J. Leukoc. Biol. 73:584–590.Google Scholar
  199. 199.
    Luttichau, H. R., Clark-Lewis, I., Jensen, P. O., Moser, C., Gerstoft, J., and Schwartz, T. W. 2003. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J. Biol. Chem. 278:10928–10933.Google Scholar
  200. 200.
    Rottman, J. B., Slavin, A. J., Silva, R., Weiner, H. L., Gerard, C. G., and Hancock, W. W. 2000. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 30:2372–2377.Google Scholar
  201. 201.
    Fife, B. T., Huffnagle, G. B., Kuziel, W. A., and Karpus, W. J. 2000. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192:899–905.Google Scholar
  202. 202.
    Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L., and Luster, A. D. 2000. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192:1075–1080.Google Scholar
  203. 203.
    Karpus, W. J. and Kennedy, K. J. 1997. MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62:681–687.Google Scholar
  204. 204.
    Kennedy, K. J., Strieter, R. M., Kunkel, S. L., Lukacs, N. W., and Karpus, W. J. 1998. Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J. Neuroimmunol. 92:98–108.Google Scholar
  205. 205.
    Fife, B. T., Kennedy, K. J., Paniagua, M. C., Lukacs, N. W., Kunkel, S. L., Luster, A. D., and Karpus, W. J. 2001. CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 166:7617–7624.Google Scholar
  206. 206.
    McGeer, P. L. and McGeer, E. G. 2002. Local neuroinflammation and the progression of Alzheimer's disease. J. Neurovirol.8:529–538.Google Scholar
  207. 207.
    Streit, W. J., Conde, J. R., and Harrison, J. K. 2001. Chemokines and Alzheimer's disease. Neurobiol. Aging 22:909–913.Google Scholar
  208. 208.
    Walker, D. G., Lue, L. F., and Beach, T. G. 2001. Gene expression profiling of amyloid beta peptide-stimulated human postmortem brain microglia. Neurobiol. Aging 22:957–966.Google Scholar
  209. 209.
    Galimberti, D., Schoonenboom, N., Scarpini, E., and Scheltens, P. 2003. Dutch-Italian Alzheimer Research Group. Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients. Ann. Neurol. 53:547–548.Google Scholar
  210. 210.
    Lipton, S. A. and Gendelman, H. E. 1995. Dementia associated with the acquired immunodeficiency syndrome. N. Eng. J. Med. 332:934–940.Google Scholar
  211. 211.
    Kaul, M., Garden, G. A., and Lipton, S. A. 2001. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994.Google Scholar
  212. 212.
    Schmidtmayerova, H., Nottet, H. S., Nuovo, G., Raabe, T., Flanagan, C. R., Dubrovsky, L., Gendelman, H. E., Cerami, A., Bukrinsky, M., and Sherry, B. 1996. Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. USA 93:700–704.Google Scholar
  213. 213.
    Sanders, V. J., Pittman, C. A., White, M. G., Wang, G., Wiley, C. A., and Achim, C. L. 1998. Chemokines and receptors in HIV encephalitis. AIDS 12:1021–1026.Google Scholar
  214. 214.
    Persidsky, Y., Ghorpade, A., Rasmussen, J., Limoges, J., Liu, X. J., Stins, M., Fiala, M., Way, D., Kim, K. S., Witte, M. H., Weinand, M., Carhart, L., and Gendelman, H. E. 1999. Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 155:1599–1611.Google Scholar
  215. 215.
    Bonwetsch, R., Croul, S., Richardson, M. W., Lorenzana, C., Valle, L. D., Sverstiuk, A. E., Amini, S., Morgello, S., Khalili, K., and Rappaport, J. 1999. Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J. Neurovirol. 5:685–694.Google Scholar
  216. 216.
    Weiss, J. M., Nath, A., Major, E. O., and Berman, J. W. 1999. HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J. Immunol. 163:2953–2959.Google Scholar
  217. 217.
    Woodman, S. E., Benveniste, E. N., Nath, A., and Berman, J. W. 1999. Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes. J. Neurovirol. 5:678–684.Google Scholar
  218. 218.
    Kaul, M. and Lipton, S. A. 1999. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc. Natl. Acad. Sci. U. S. A. 96:8212–8216.Google Scholar
  219. 219.
    Langford, D. and Masliah, E. 2001. Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol. 11:306–312.Google Scholar
  220. 220.
    Tong, N., Perry, S. W., Zhang, Q., James, H. J., Guo, H., Brooks, A., Bal, H., Kinnear, S. A., Fine, S., Epstein, L. G., Dairaghi, D., Schall, T. J., Gendelman, H. E., Dewhurst, S., Sharer, L. R., and Gelbard, H. A. 2000. Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J. Immunol. 164:1333–1339.Google Scholar
  221. 221.
    Brenneman, D. E., Hauser, J., Spong, C. Y., Phillips, T. M., Pert, C. B., and Ruff, M. 1999. VIP and D-ala-peptide T-amide release chemokines which prevent HIV-1 GP120-induced neuronal death. Brain Res. 838:27–36.Google Scholar
  222. 222.
    Hesselgesser, J., Taub, D., Baskar, P., Greenberg, M., Hoxie, J., Kolson, D. L., and Horuk, R. 1998. Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr. Biol. 8:595–598.Google Scholar
  223. 223.
    Matsumoto, T., Ikeda, K., Mukaida, N., Harada, A., Matsumoto, Y., Yamashita, J., and Matsushima, K. 1997. Prevention of cerebral edema and infarct in cerebral reperfusion injury by an antibody to interleukin-8. Lab. Invest. 77:119–125.Google Scholar
  224. 224.
    Hughes, P. M., Allegrini, P. R., Rudin, M., Perry, V. H., Mir, A. K., and Wiessner, C. 2002. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J. Cereb. Blood Flow. Metab. 22:308–317.Google Scholar
  225. 225.
    Wang, X., Ellison, J. A., Siren, A. L., Lysko, P. G., Yue, T. L., Barone, F. C., Shatzman, A., and Feuerstein, G. Z. 1998. Prolonged expression of interferon-inducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat. J. Neurochem. 71:1194–1204.Google Scholar
  226. 226.
    Takami, S., Nishikawa, H., Minami, M., Nishiyori, A., Sato, M., Akaike, A., and Satoh, M. 1997. Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci. Lett. 227:173–176.Google Scholar
  227. 227.
    Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., Fairchild-Huntress, V., Fang, Q., Dunmore, J. H., Huszar, D., and Pan, Y. 2002. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J. Neuroimmunol. 125:59–65.Google Scholar
  228. 228.
    Popivanova, B. K., Koike, K., Tonchev, A. B., Ishida, Y., Kondo, T., Ogawa, S., Mukaida, N., Inoue, M., and Yamashima, T. 2003. Accumulation of microglial cells expressing ELR motif-positive CXC chemokines and their receptor CXCR2 in monkey hippocampus after ischemia-reperfusion. Brain Res. 970:195–204.Google Scholar
  229. 229.
    Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., and Ben-Baruch, A. 2001. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J. Immunol. 167:4747–4757.Google Scholar
  230. 230.
    Rempel, S. A., Dudas, S., Ge, S., and Gutierrez, J. A. 2000. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res. 6:102–111.Google Scholar
  231. 231.
    Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., and Murphy, G. P. 1998. CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J. Surg. Oncol. 69:99–104.Google Scholar
  232. 232.
    Oh, J. W., Drabik, K., Kutsch, O., Choi, C., Tousson, A., and Benveniste, E. N. 2001. CXC chemokine receptor 4 expression and function in human astroglioma cells. J. Immunol. 166:2695–2704.Google Scholar
  233. 233.
    Yamanaka, R., Tanaka, R., Yoshida, S., Saitoh, T., and Fujita, K. 1995. Growth inhibition of human glioma cells modulated by retrovirus gene transfection with antisense IL-8. J. Neurooncol. 25:59–65.Google Scholar
  234. 234.
    Desbaillets, I., Diserens, A. C., de Tribolet, N., Hamou, M. F. and Van Meir, E. G. 1999. Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18:1447–1456.Google Scholar
  235. 235.
    Yoshimura, T., Robinson, E. A., Tanaka, S., Appella, E., Kuratsu, J., and Leonard, E. J. 1989. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169:1449–1459.Google Scholar
  236. 236.
    Desbaillets, I., Tada, M., de Tribolet, N., Diserens, A. C., Hamou, M. F., and Van Meir, E. G. 1994. Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int. J. Cancer. 58:240–247.Google Scholar
  237. 237.
    Takeshima, H., Kuratsu, J., Takeya, M., Yoshimura, T., and Ushio, Y. 1994. Expression and localization of messenger RNA and protein for monocyte chemoattractant protein-1 in human malignant glioma. J. Neurosurg. 80:1056–1062.Google Scholar
  238. 238.
    Leung, S. Y., Wong, M. P., Chung, L. P., Chan, A. S., and Yuen, S. T. 1997. Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol. (Berlin) 93:518–527.Google Scholar
  239. 239.
    Kielian, T., van Rooijen, N., and Hickey, W. F. 2002. MCP-1 expression in CNS-1 astrocytoma cells: implications for macrophage infiltration into tumors in vivo. J. Neurooncol. 56:1–12.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Cell Biology and NeuroscienceIstituto Superiore di SanitáRomeItaly

Personalised recommendations