Advertisement

Neurochemical Research

, Volume 29, Issue 5, pp 961–964 | Cite as

Alexander Disease: A Leukodystrophy Caused by a Mutation in GFAP

  • Anne B. Johnson
Article

Abstract

Alexander disease, a rare fatal disorder of the central nervous system, causes progressive loss of motor and mental function. Until recently it was of unknown etiology, almost all cases were sporadic, and there was no effective treatment. It was most common in an infantile form, somewhat less so in a juvenile form, and was rarely seen in an adult-onset form. A number of investigators have now shown that almost all cases of Alexander disease have a dominant mutation in one allele of the gene for glial fibrillary acidic protein (GFAP) that causes replacement of one amino acid for another. Only in very rare cases of the adult-onset form is the mutation present in either parent. Thus, in almost all cases, the mutation arises as a spontaneous event, possibly in the germ cell of one parent.

Alexander disease gene glial fibrillary acidic protein (GFAP) leukodystrophy mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    Russo, L. S., Jr., Aron, A., and Anderson, P. J. 1976. Alexander's disease: a report and reappraisal. Neurology 26:607–614.Google Scholar
  2. 2.
    Escourolle, R., de Baecque, C., Gray, F., Baumann, N., and Hauw, J. J. 1979. Etude en microscopie electronique et neurochimique d'un cas de maladie d'Alexander. Acta Neuropathol. (Berl) 45:133–140.Google Scholar
  3. 3.
    Borrett, D. and Becker, L. E. 1985. Alexander's disease. A disease of astrocytes. Brain 108(part 2):367–385.Google Scholar
  4. 4.
    Pridmore, C. L., Baraitser, M., Harding, B., Boyd, S. G., Kendall, B., and Brett, E. M. 1993 Alexander's disease: clues to diagnosis. J. Child Neurol. 8:134–144.Google Scholar
  5. 5.
    Johnson, A. B. 1996. Alexander disease. Pages 701–710, in Moser, H. W. (ed), Neurodystrophies and neurolipidoses, handbook of clinical neurology, vol 66 (revised series vol 22). Elsevier Science, Amsterdam.Google Scholar
  6. 6.
    Johnson, A. B. 2002. Alexander disease: a review and the gene. Int. J. Dev. Neurosci. 20:391–394.Google Scholar
  7. 7.
    Johnson, A. B. 2002. Alexander disease. In Gilman S. (ed.), Medlink neurology. Medlink Corporation, San Diego (Published electronically, at www.medlink.com, updated annually).Google Scholar
  8. 8.
    Johnson, A. B. and Brenner, M. 2003. Alexander disease: clinical, pathologic, and genetic features. J. Child Neurol. 2003: 18:625–632.Google Scholar
  9. 9.
    Alexander, W. S. 1949. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72:373–381.Google Scholar
  10. 10.
    van der Knaap, M. S., Naidu, S., Breiter, S. N., Blaser, S., Stroink, H., Springer, S., Begeer, J. C., van Coster, R., Barth, P. G., Thomas, N. H., Valk, J., and Powers, J. M. 2001 Alexander disease: diagnosis with MR imaging. AJNR Am. J. Neuroradiol. 22:541–552.Google Scholar
  11. 11.
    Mastri, A. R. and Sung, J. H. 1973. Diffuse Rosenthal fiber formation in the adult: a report of four cases. J. Neuropathol. Exp. Neurol. 32:424–436.Google Scholar
  12. 12.
    Howard, R. S., Greenwood, R., Gawler, J., Scaravalli, F., Marsden, C. D., and Harding, A. E. 1993. A familial disorder associated with palatal myoclonus, other brainstem signs, tetraparesis, ataxia and Rosenthal fiber formation. J. Neurol. Neurosurg. Psychiatry 56:977–981.Google Scholar
  13. 13.
    Honnorat, J., Flocard, F., Ribot, C., Saint-Pierre, G., Pineau, D., and Peysson, P. 1993. Alexander's disease in adults and diffuse cerebral gliomatosis in 2 members of the same family [in French]. Rev. Neurol. (Paris) 149:781–787.Google Scholar
  14. 14.
    Schwankhaus, J. D., Parisi, J. E., Gulledge, W. R., Chin, L., and Currier, R. D. 1995. Hereditary adult-onset Alexander's disease with palatal myoclonus, spastic paraparesis, and cerebellar ataxia. Neurology 45:2216–2271.Google Scholar
  15. 15.
    Okamoto, Y., Mitsuyama, H., Jonosono, M., Hirata, K., Arimura, K., Osame, M., and Nakagawa, M. 2002. Autosomal dominant palatal myoclonus and spinal cord atrophy. J. Neurol. Sci. 195:71–76.Google Scholar
  16. 16.
    Johnson, A. B. and Bettica, A. 1989. On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. Am. J. Anat. 185:335–341.Google Scholar
  17. 17.
    Iwaki, T., Kume-Iwaki, A., Liem, R. K. H., and Goldman, J. E. 1989. αB-Crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57:71–78.Google Scholar
  18. 18.
    Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A., and Goldman, J. E. 1991. Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am. J. Pathol. 138:875–885.Google Scholar
  19. 19.
    Iwaki, A., Iwaki, T., Goldman, J. E., Ogomori, K., Tateishi, J., and Sakaki, Y. 1992. Accumulation of αB-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5′-flanking and coding sequence of the genomic DNA. Neurosci. Lett. 140:89–92.Google Scholar
  20. 20.
    Head, M. W., Corbin, E., and Goldman, J. E. 1993. Overexpression and abnormal modification of the stress proteins αB-crystallin and HSP27 in Alexander disease. Am. J. Pathol. 143:1743–1753.Google Scholar
  21. 21.
    Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., and Brenner, M. 1998. Fatal encephalopathy with astro-cyte inclusions in GFAP transgenic mice. Am. J. Pathol. 152:391–398.Google Scholar
  22. 22.
    Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., and Messing, A. 2001. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 27:117–120.Google Scholar
  23. 23.
    Messing, A., Goldman, J. E., Johnson, A. B., and Brenner, M. 2001. Alexander disease: new insights from genetics. J. Neuropathol. Exp. Neurol. 60:563–573.Google Scholar
  24. 24.
    Rodriguez, D., Gautier, F., Bertini, E., Bugiani, M., Brenner, M., N'guyen, S., Goizet, C., Gelot, A., Surtees, R., Pedespan, J. M., Hernandorena, X., Troncoso, M., Uziel, G., Messing, A., Ponsot, G., Pham-Dinh, D., Dautigny, A., and Boespflug-Tanguy, O. 2001. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am. J. Hum. Genet. 69:1134–1140.Google Scholar
  25. 25.
    Aoki, Y., Haginoya, K., Munakata, M., Yokoyama, H., Nishio, T., Togashi, N., Ito, T., Suzuki, Y., Kure, S., Iinuma, K., Brenner, M., and Matsubara, Y. 2001. A novel mutation in glial fibrillary acidic protein gene in a patient with Alexander disease. Neurosci. Lett. 312:71–74.Google Scholar
  26. 26.
    Shiroma, N., Kanazawa, N., Izumi, M., Sugal, K., Sasaki, M., Hanaoka, S., Kaga, M., and Tsujino, S. 2001. Diagnosis of Alexander disease in a Japanese patient by molecular genetic analysis. J. Hum. Genet. 46:579–582.Google Scholar
  27. 27.
    Gorospe, J. R., Naidu, S., Johnson, A. B., Puri, V., Raymond, G. V., Jenkins, S. D., Pedersen, R. C., Lewis, D., Knowles, P., Fernandez, R., De Vivo, D., van der Knaap, M. S., Messing, A., Brenner, M., and Hoffman, E. P. 2002. Molecular findings in symptomatic and presymptomatic Alexander disease patients. Neurology 58:1494–1500.Google Scholar
  28. 28.
    Meins, M., Brockmann, K., Yadav, S., Haupt, M., Sperner, J., Stephani, U., and Hanefeld, F. 2002. Infantile Alexander disease: A GFAP mutation in monozygotic twins and novel mutations in two other patients. Neuropediatrics 33:194–198.Google Scholar
  29. 29.
    Namekawa, M., Takiyama, Y., Aoki, Y., Takayashiki, N., Sakoe, K., Shimazaki, H., Taguchi, T., Tanaka, Y., Nishizawa, M., Saito, K., Matsubara, Y., and Nakano, I. 2002. Identification of GFAP gene mutation in hereditary adult-onset Alexander's disease. Ann. Neurol. 52:779–785.Google Scholar
  30. 30.
    Sawaishi, Y., Yano, T., Takaku, I., and Takada, G. 2002. Juvenile Alexander disease with a novel mutation in glial fibrillary acidic protein gene. Neurology 58:1541–1543.Google Scholar
  31. 31.
    Shiihara, T., Kato, M., Honma, T., Ohtaki, S., Sawaishi, Y., and Hayasaka, K. 2002. Fluctuation of computed tomographic findings in white matter in Alexander's disease. J. Child. Neurol. 17:227–230.Google Scholar
  32. 32.
    Probst, E. N., Hagel, C., Weisz, V., Nagel, S., Wittkugel, O., Zeumer, H., and Kohlschutter, A. 2003. Atypical focal MRI lesions in a case of juvenile Alexander's disease. Ann. Neurol. 53:118–120.Google Scholar
  33. 33.
    Shiroma, N., Kanazawa, N., Kato, Z., Shimozawa, N., Imamura, A., Ito, M., Ohtani, K., Oka, A., Wakabayashi, K., Iai, M., Sugai, K., Sasaki, M., Kaga, M., Ohta, T., and Tsujino, S. 2003. Molecular genetic study in Japanese patients with Alexander disease: a novel mutation, R79L. Brain Dev. 25:116–121.Google Scholar
  34. 34.
    Li, R., Messing, A., Goldman, J. E., and Brenner, M. 2002. GFAP mutations in Alexander disease. Int. J. Dev. Neurosci. 20:259–268.Google Scholar
  35. 35.
    Nielsen, A. L., Jorgensen, P., and Jorgensen, A. L. 2002. Mutations associated with a childhood leukodystrophy, Alexander disease, cause deficiency in dimerization of the cytoskeleton protein GFAP. J. Neurogenet. 16:175–179.Google Scholar
  36. 36.
    Castellani, R. J., Perry, G., Harris, P. L. R., Monnier, V. M., Cohen, M. L., and Smith, M. A. 1997. Advanced glycation modification of Rosenthal fibers in patients with Alexander disease. Neurosci. Lett. 231:79–82.Google Scholar
  37. 37.
    Castellani, R. J., Perry, G., Harris, P. L. R., Cohen, M. L., Sayre, L. M., Salomon, R. G., and Smith, M. A. 1998. Advanced lipid peroxidation end-products in Alexander's disease. Brain Res. 787:15–18.Google Scholar
  38. 38.
    Gingold, M. K., Bodensteiner, J. B., Schochet, S. S., and Jaynes, M. 1999. Alexander's disease: unique presentation. J. Child. Neurol. 14:325–329.Google Scholar
  39. 39.
    Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., and Raine, C. S. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615.Google Scholar
  40. 40.
    McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A. 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93:6361–6366.Google Scholar
  41. 41.
    Messing, A. and Brenner, M. 2003. GFAP: functional implications gleaned from studies of genetically engineered mice. Glia 43:87–90.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Departments of Pathology and NeuroscienceAlbert Einstein College of MedicineBronx

Personalised recommendations