Neurochemical Research

, Volume 29, Issue 4, pp 835–842 | Cite as

Halothane Anesthesia Affects NMDA-Stimulated Cholinergic and GABAergic Modulation of Striatal Dopamine Efflux and Metabolism in the Rat In Vivo



Microdialysis of the striatum of halothane-anesthetized rats was used to study the participation of local cholinergic and GABAergic neurotransmission in NMDA receptor-modulated striatal dopamine release and metabolism. Reverse dialysis of NMDA (1 mM) evoked a 10-fold increase in dopamine efflux and reduced DOPAC and HVA to >20% of basal values. The effect of NMDA on dopamine efflux was abolished by atropine (10 μM) but unaffected by (+)-bicuculline (50 μM). NMDA-induced decrease in DOPAC (but not HVA) efflux was potentiated by atropine, whereas (+)-bicuculline attenuated the decrease in DOPAC and HVA. Compared to our previous studies in unanesthetised rats, our data suggest that halothane anesthesia alters the balance between NMDA-stimulated cholinergic and GABAergic influences on striatal dopamine release and metabolism. Differential sensitivity to halothane of NMDA receptors expressed by the neurones mediating these modulatory influences, or loss of specific NMDA receptor populations through voltage-dependent Mg2+ block under anesthesia, could underlie these observations.

Dopamine release NMDA GABA acetylcholine anesthesia halothane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weihmüller, F. B., O'Dell, S. J., Cole, B. N., and Marshall, J. K. 1991. MK-801 attenuates the dopamine-releasing but not behavioral effects of methamphetamine: An in vivo microdialysis study. Brain Res. 549:230–235.Google Scholar
  2. 2.
    Keefe, K. A., Zigmond, M. J., and Abercrombie, E. D. 1992. Extracellular dopamine in striatum: Influence of nerve impulse activity in medial forebrain bundle and local glutamatergic input. Neuroscience 47:325–332.Google Scholar
  3. 3.
    Lund, L., Gonzales, R. A., and Wilcox, R. E. 1991. Effect of NMDA receptor agonists and antagonists on striatal extracellular dopamine. FASEB J. 5:854.Google Scholar
  4. 4.
    Imperato, A., Honore, T., and Jensen, L. H. 1990. Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: A study in freely moving rats. Brain Res. 530:223–228.Google Scholar
  5. 5.
    Morari, M., O'Connor, W. T., Ungerstedt, U., Bianchi, C., and Fuxe, K. 1996. Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat-II: Evidence for striatal N-methyl-D-aspartate receptor regulation of striatonigral GABAergic transmission and motor function. Neuroscience 72:89–97.Google Scholar
  6. 6.
    Benveniste, H., and Hansen, A. J. 1991. Practical aspects of using microdialysis for determination of brain interstitial concentrations. Pages 84–102, in Robinson, T. E., and Justice, J. B. Jr. (eds.), Microdialysis in the Neurosciences, Vol. 7, Elsevier, Amsterdam.Google Scholar
  7. 7.
    Morgan, M. E., Singhal, D., and Anderson, B. D. 1996. Quantitative assessment of blood-brain barrier damage during microdialysis. J. Pharmacol. Exp. Ther. 277:1167–1176.Google Scholar
  8. 8.
    Westerink, B. H. C., and de Vries, J. B. 1988. Characterization of the in vivo dopamine release as determined by brain microdialysis after acute and subchronic implantations: Methodological aspects. J. Neurochem. 51:683–687.Google Scholar
  9. 9.
    de Boer, P., Damsma, G., Fibiger, H. C., Timmerman, W., de Vries, J. B., and Westerink, B. H. C. 1990. Dopaminergic-cholinergic interactions in the striatum: The critical significance of calcium concentrations in brain microdialysis. Naungno Schmicdebergs Arch. Pharmacol 342:528–534.Google Scholar
  10. 10.
    Moghaddam, B., and Bunney, S. B. 1989. Ionic composition of microdialysis perfusion fluid solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J. Neurochem. 53:652–654.Google Scholar
  11. 11.
    Yamamoto, B. K., and Pehek, E. A. 1990. A neurochemical heterogeneity of the rat striatum as measured by in vivo electro-chemistry and microdialysis. Brain Res. 506:236–242.Google Scholar
  12. 12.
    O'Neill, R. D., and Fillenz, M. 1985. Simultaneous monitoring of dopamine release in rat frontal cortex, nucleus accumbens and striatum: Effect of drugs, circadian changes and correlations with motor activity. Neuroscience 16:49–55.Google Scholar
  13. 13.
    Salamone, J. D., Keller, R. W., Zigmond, M. J., and Stricker, E. M. 1989. Behavioural activation in rats increases striatal dopamine metabolism measured by dialysis perfusion. Brain Res. 487:215–224.Google Scholar
  14. 14.
    Abercrombie, E. D., Keefe, K. A., DiFfrischia, D. S., and Zigmond, M. J. 1989. Differential effects of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:1655–1658.Google Scholar
  15. 15.
    Abercrombie, E. D., and Zigmond, M. J. 1990. Striatal dopamine release: In vivo evidence for local initiation. Pages 575–578, in Kalsner, S., and Westfall, T. C. (eds.), Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter Release, Vol. 604, The New York Academy of Sciences, New York.Google Scholar
  16. 16.
    Franks, N. P., and Lieb, W. R. 1998. Which molecular targets are most relevant to general anesthesia? Tox. Lett. 100-;101:1–8.Google Scholar
  17. 17.
    Sugimura, M., Kitayama, S., Morita, K., Irifune, M., Takarada, T., Kawahara, M., and Dohi, T. 2001. Effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine by their transporters heterologously expressed in COS cells and in rat brain synaptosomes. Tox. Lett. 123:69–76.Google Scholar
  18. 18.
    Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K. 1973. Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185:560–571.Google Scholar
  19. 19.
    Bertorelli, R., Hallström, Å., Hurd, Y. L., Karlsson, A., Consolo, S., and Ungerstedt, U. 1990. Anesthesia effects on in vivo acetylcholine transmission: Comparison of radioenzymatic and HPLC assay. Eur. J. Pharmacol. 175:79–83.Google Scholar
  20. 20.
    Martin, D. C., Abraham, J. E., Plagenhoef, M., and Aronstam, R. S. 1991. Volatile anesthetics and NMDA receptors: Enflurane inhibition of glutamate-stimulated (3H)MK-801 binding and reversal by glycine. Neurosci. Lett. 132:73–76.Google Scholar
  21. 21.
    Spampinato, U., Girault, J., Savaki, H. E., Glowinski, J., Besson, M. 1986. Apomorphine and haloperidol effects on striatal 3H-dopamine release anesthetized, awake restrained and freely moving rats. Brain Res. Bull. 16:161–166.Google Scholar
  22. 22.
    Whitehead, K. J., Rose, S., and Jenner, P. 2001. Involvement of intrinsic cholinergic and GABAergic innervation in the effect of NMDA on striatal dopamine efflux and metabolism as assessed by microdialysis studies in freely moving rats. Eur. J. Neurosci. 14:851–860.Google Scholar
  23. 23.
    Whitehead, K. J., Rose, S., Hindmarsh, J. G., Jenner, P., and Marsden, C. D. 1992. A novel design for an inexpensive microdialysis probe for direct stereotaxic implantation into the striatum of the rat. Br. J. Pharmacol. 106:140P.Google Scholar
  24. 24.
    König, J. F. R., and Klippel, R. A. 1963. The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Williams and Wilkens, Baltimore.Google Scholar
  25. 25.
    Ungerstedt, U. 1991. Introduction to intracerebral microdialysis. Pages 3–22, in Robinson, T. E., and Justice, J. B. Jr. (eds.), Microdialysis in the Neurosciences, Vol. 7, Elsevier, Amsterdam.Google Scholar
  26. 26.
    Arbuthnott, G. W., Fairbrother, I. S., and Butcher, S. P. 1990. Dopamine release and metabolism in the rat striatum: an analysis by 'in vivo' brain microdialysis. Pharmacol. Ther. 48:281–293.Google Scholar
  27. 27.
    Westerink, B. H. C. 1985. Sequence and significance of dopamine metabolism in the rat brain. Neurochem. Int. 7:221–227.Google Scholar
  28. 28.
    Robinson, T. E., and Camp, D. M. 1991. The feasibility of repeated microdialysis for within-subject design experiments: Studies on mesostriatal dopamine systems. Pages 189–234, in Robinson, T. E., and Justice, J. B. Jr. (eds.), Microdialysis in the Neurosciences, Vol. 7, Elsevier, Amsterdam.Google Scholar
  29. 29.
    Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K. 1973. Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185:560–571.Google Scholar
  30. 30.
    Adachi, Y. U., Watanabe, K., Satoh, T., and Vizi, E. S., 2001. Halothane potentiates the effect of metamphetamine and nomifensine on extracellular dopamine levels in rat striatum: A microdialysis study. Br. J. Anesth. 86:837–845.Google Scholar
  31. 31.
    Pocock, G., and Richards, C. D. 1993. Excitatory and inhibitory synaptic mechanisms in anesthesia. Br. J. Anesth. 71:134–147.Google Scholar
  32. 32.
    Marek, P., Chapman, C. D., and Howard, S. 1992. The effect of phencyclidine and DL-2-amino-5-phosphonovaleric acid on N-methyl-D-aspartic acid induced changes in extracellular concentration of dopamine and DOPAC in the rat neostriatum. Neuropharmacology 31:123–127.Google Scholar
  33. 33.
    Morari, M., O'Connor, W. T., Ungerstedt, U., and Fuxe, K. 1993. N-Methyl-D-aspartic acid differentially regulates extracellular dopamine, GABA, and glutamate levels in the dorsolateral neostriatum of the halothane-anesthetized rat: An in vivo microdialysis study. J. Neurochem. 60:1884–1893.Google Scholar
  34. 34.
    Carter, C. J., L'Heureux, R., and Scatton, B. 1988. Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: A trans-striatal dialysis study. J. Neurochem. 51:462–468.Google Scholar
  35. 35.
    Chéramy, A., Godeheu, G., L'Hirondel, M., and Glowinski, J. 1996. Cooperative contributions of cholinergic and NMDA receptors in the presynaptic control of dopamine release from synaptosomes of the rat striatum. J. Pharmacol. Exp. Ther. 276:616–625.Google Scholar
  36. 36.
    Galli, T., Artaud, F., Torrens, Y., Godeheu, G., Desban, M., Glowinski, J., and Cheramy, A. 1994. NMDA and carbachol but not AMPA affect differently the release of (3H)GABA in striosome-and matrix-enriched areas of the rat striatum. Brain Res. 649:243–252.Google Scholar
  37. 37.
    Young, A. M. J., and Bradford, H. F. 1993. N-Methyl-D-aspartate releases γ-aminobutyric acid from rat striatum in vivo: A microdialysis study using a novel preloading method. J. Neurochem. 60:487–492.Google Scholar
  38. 38.
    Krebs, M. O., Kemel, M. L., Gauchy, C., Desban, M., and Glowinski, J. 1993. Local GABAergic regulation of the N-methyl-D-aspartate-evoked release of dopamine is more prominent in striosomes than in matrix of the rat striatum. Neuroscience 57:249–260.Google Scholar
  39. 39.
    Ronken, E., Mulder, A. H., and Schoffelmeer, A. N. M. 1993. Interacting presynaptic k-opioid and GABAA receptors modulate dopamine release from rat striatal synaptosomes. J. Neurochem. 61:1634–1639.Google Scholar
  40. 40.
    De Boer, P., and Westerink, B. H. C. 1994. GABAergic modulation of striatal cholinergic interneurons: An in vivo microdialysis study. J. Neurochem. 62:70–75.Google Scholar
  41. 41.
    James, T. A., and Starr, M. S. 1978. The role of GABA in the substantia nigra. Nature 275:229–231.Google Scholar
  42. 42.
    Minchin, M. C. W. 1981. The effects of anesthetics on the uptake and release of γ-aminobutyrate and D-aspartate in rat brain slices. Br. J. Pharmacol. 73:681–689.Google Scholar
  43. 43.
    Hirota, K., Roth, S. H., Fujimura, J., Masuda, A., and Ito, Y. 1998. GABAergic mechanisms in the action of general anesthetics. Tox. Lett.100-;101:203–207.Google Scholar
  44. 44.
    Shimoji, K., Fujioka, H., Fukazawa, T., Hashiba, M., and Maruyama, Y. 1984. Anesthetics and excitatory/inhibitory responses of midbrain reticular neurons. Anesthesiology 61:151–155.Google Scholar
  45. 45.
    Yoshimura, M., Higashi, H., Fujita, S., and Shimoji, K. 1985. Selective depression of hippocampal inhibitory postsynaptic potentials and spontaneous firing by volatile anesthetics. Brain Res. 340:363–368.Google Scholar
  46. 46.
    Perouansky, M., Kirson, E. D., and Yaari, Y. 1996. Halothane blocks synaptic excitation of inhibitory interneurons. Anesthesiology 85:1431–1438.Google Scholar
  47. 47.
    Flohr, H., Glade, U., and Motzko, D. 1998. The role of the NMDA synapse in general anesthesia. Tox. Lett. 100-;101:23–29.Google Scholar
  48. 48.
    Landwehrmeyer, G. B., Standaert, D. G, Testa, C. M., Penney, J. B., and Young, A. B. 1995. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci. 15:5297–5307.Google Scholar
  49. 49.
    Standaert, D. G., Testa, C. M., Penney, J. B., and Young, A. B. 1994. Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343:1–16.Google Scholar
  50. 50.
    Nankai, M., Klarica, M., Fage, D., and Carter, C. 1996. Evidence for native receptor subtype pharmacology as revealed by differential effects on the NMDA-evoked release of striatal neuromodulators: Eliprodil, ifenprodil and other native NMDA receptor subtype selective compounds. Neurochem. Int. 29:529–542.Google Scholar
  51. 51.
    Nankai, M., Klarica, M., Fage, D., and Carter, C. 1998. The pharmacology of native N-methyl-D-aspartate receptor subtypes: Different receptors control the release of different striatal and spinal transmitters. Prog. Neuropsychopharmacol. Biol. Psychiatry 22:35–64.Google Scholar
  52. 52.
    Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.Google Scholar
  53. 53.
    Cotman, C. W., and Monaghan, D. T. 1988. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic transmission. Annu. Rev. Neurosci. 11:61–80Google Scholar
  54. 54.
    Surmeier, J. D., Bargas, J., and Kitai, S. T. 1988. Voltage-clamp analysis of a transient potassium current in rat neostriatal neurons. Brain Res. 473:187–192.Google Scholar
  55. 55.
    Rampil, I. J., and Laster, M. J. 1992. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 77:920–925.Google Scholar
  56. 56.
    Cherubini, E., Herrling, P. L., Lanfumey, L., and Stanzione, P. 1988. Excitatory amino acids in synaptic excitation of rat striatal neurons in vitro. J. Physiol. 400:677–690.Google Scholar
  57. 57.
    Herrling, P. L. 1992. Synaptic physiology of excitatory amino acids. Arzneimit. Forsch. Drug Res. 42:202–208.Google Scholar
  58. 58.
    Kimura, M., Rajkowski, J., and Evarts, E. 1984. Tonically discharging putamen neurons exhibit set-dependent responses. Proc. Nat. Acad. Sci. USA 81:4998–5001.Google Scholar
  59. 59.
    Wilson, C. J., Chang, H. T., and Kitai, S. T. 1990. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci. 10:508–519.Google Scholar
  60. 60.
    Lapper, S. R., and Bolam, J. P. 1992. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545.Google Scholar
  61. 61.
    Chowdhury, M., and Fillenz, M. 1991. Presynaptic adenosine A2 and N-methyl-D-aspartate receptors regulate dopamine synthesis in rat striatal synaptosomes. J. Neurochem. 56:1783–1788.Google Scholar
  62. 62.
    Desce, J. M., Godeheu, G., Galli, T., Glowinski, J., and Chéramy, A. 1994. Opposite presynaptic regulations by glutamate through NMDA receptors of dopamine synthesis and release in rat striatal synaptosomes. Brain Res. 640:205–214.Google Scholar
  63. 63.
    Kawaguchi, Y., Wilson, C. J., Augood, S. J., and Emson, P. C. 1995. Striatal interneurones: Chemical, physiological and morphological characterization. Trends Neurosci. 18:527–535.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's King's and St. Thomas's School of Biomedical Sciences, King's College, Guy's CampusLondonUnited Kingdom

Personalised recommendations