Advertisement

Neurochemical Research

, Volume 29, Issue 3, pp 617–628 | Cite as

Redox Control of Signal Transduction, Gene Expression and Cellular Senescence

  • Franca Esposito
  • Rosario Ammendola
  • Raffaella Faraonio
  • Tommaso Russo
  • Filiberto Cimino
Article

Abstract

Reactive oxygen species (ROS) act as subcellular messengers in such complex cellular processes as mitogenic signal transduction, gene expression, regulation of cell proliferation, replicative senescence, and apoptosis. They serve to maintain cellular homeostasis and their production is under strict control. However, the mechanisms whereby ROS act are still obscure. Here we review recent advances in our understanding of signaling mechanisms and recent data about the involvement of ROS in: (i) the regulation of the mitogenic transduction elements, particularly protein kinases and phosphatases; (ii) the regulation of gene expression; and (iii) the induction of replicative senescence and the role, if any, in aging and age-related disorders.

Reactive oxygen species signal transduction gene expression cell senescence aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299.PubMedGoogle Scholar
  2. 2.
    Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A., and Rhee, S. G. 2000. Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275:10527–10531.PubMedGoogle Scholar
  3. 3.
    Ammendola, R., Ruocchio, M., Chirico, G., Russo, L., De Felice, C., Esposito, F., Russo, T., and Cimino, F. 2002. Inhibition of NADH/NADPH oxidase affects signal transduction by growth factor receptors in normal fibroblasts. Arch. Biochem. Biophys. 397:253–257.PubMedGoogle Scholar
  4. 4.
    Kamata, H., Shibukawa, Y., Oka, S. I., and Hirata, H. 2000. Epidermal growth factor receptor is modulated by redox through multiple mechanisms: Effects of reductants and H2O2. Eur. J. Biochem. 267:1933–1944.PubMedGoogle Scholar
  5. 5.
    Heffetz, D., Bushkin, I., Dror, R., and Zick, Y. 1990. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265:2896–2902.PubMedGoogle Scholar
  6. 6.
    Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., and Kurose, H. 2000. G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495.PubMedGoogle Scholar
  7. 7.
    Ushio-Fukai, M., Alexander, R. W., Akers, M., Yin, Q., Fujio, Y., Walsh, K., and Griendling, K. K. 1999. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274:22699–22704.PubMedGoogle Scholar
  8. 8.
    Mukhin, Y. V., Garnovskaya, M. N., Collinsworth, G., Grewal, J. S., Pendergrass, D., Nagai, T., Pinckney, S., Greene, E. L., and Raymond, J. R. 2000. 5-Hydroxytryptamine1A receptor/gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem. J. 347:61–67.PubMedGoogle Scholar
  9. 9.
    Pani, G., Colavitti, R., Bedogni, B., Anzevino, R., Borrello, S., and Galeotti, T. 2000. A redox signaling mechanism for density-dependent inhibition of cell growth. J. Biol. Chem. 275:38891–38899.PubMedGoogle Scholar
  10. 10.
    Bedogni, B., Pani, G., Colavitti, R., Riccio, A., Borrello, S., Murphy, M., Smith, R., Eboli, M. L., and Galcotti, T. 2003. Redox regulation of CREB and induction of manganous superoxide dismutase in NGF-dependent cell survival. J. Biol. Chem. 278:16510–16519.PubMedGoogle Scholar
  11. 11.
    Hirata, H., Hibasami, H., Yoshida, T., Ogawa, M., Matsumoto, M., Morita, A., and Uchida, A. 2001. Nerve growth factor signaling of p75 induces differentiation and ceramide-mediated apoptosis in Schwann cells cultured from degenerating nerves. Glia 36:245–258.PubMedGoogle Scholar
  12. 12.
    Lee, S. Y., Andoh, T., Murphy, D. L., and Chiuch, C. C. 2003. 17beta-Estradiol activates ICI 182,780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection. FASEB J. 17:947–948.PubMedGoogle Scholar
  13. 13.
    Finkel, T. 2003. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15:247–254.PubMedGoogle Scholar
  14. 14.
    Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., and Rhee, S. G. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide: Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272:217–221.PubMedGoogle Scholar
  15. 15.
    Datta, S. R., Brunet, A., and Greenberg, M. E. 1999. Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927.PubMedGoogle Scholar
  16. 16.
    Devary, Y., Gottlieb, R. A., Smeal, T., and Karin, M. 1992. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71:1081–1091.PubMedGoogle Scholar
  17. 17.
    Yoshizumi, M., Abe, J., Haendeler, J., Huang, Q., and Berk, B. C. 2000. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J. Biol. Chem. 275:11706–11712.PubMedGoogle Scholar
  18. 18.
    Secrist, J. P., Burns, L. A., Karnitz, L., Koretzsly, G. A., and Abraham, R. T. 1993. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268:5886–5393.PubMedGoogle Scholar
  19. 19.
    Hardwick, J. S. and Sefton, B. M. 1997. The activated form of the Lck tyrosine protein kinase in cells exposed to hydrogen peroxide is phosphorylated at both Tyr-394 and Tyr-505. J. Biol. Chem. 272:25429–25432.PubMedGoogle Scholar
  20. 20.
    Wang, X., McCullough, K. D., Franke, T. F., and Holbrook, N. J. 2000. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275:14624–14631.PubMedGoogle Scholar
  21. 21.
    Mitsuuchi, Y., Johnson, S. W., Selvakumaran, M., Williams, S. J., Hamilton, T. C., and Testa, J. R. 2000. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer Res. 60:5390–5394.PubMedGoogle Scholar
  22. 22.
    Esposito, F., Chirico, G., Montesano Gesualdi, N., Posada, I., Ammendola, R., Russo, T., Cirino, G., and Cimino, F. 2003. Akt activation by reactive oxygen species is independent from tyrosine kinase receptor phosphorylation and requires Src activity. J. Biol. Chem. 278:20828–20834.PubMedGoogle Scholar
  23. 23.
    Chang, L. and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40.PubMedGoogle Scholar
  24. 24.
    Zafarullah, M., Li, W. Q., Sylvester, J., and Ahmad, M. 2003. Molecular mechanisms of N-acetylcysteine actions. Cell Mol. Life Sci. 60:6–20.PubMedGoogle Scholar
  25. 25.
    Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N. J. 1996. Activation of mitogen-activated protein kinase by H2O2: Role in cell survival following oxidant injury. J. Biol. Chem. 271:4138–4142.PubMedGoogle Scholar
  26. 26.
    Esposito, F., Russo, T., and Cimino, F. 2002. Generation of prooxidant conditions in intact cells to induce modifications of cell cycle regulatory proteins. Methods Enzymol. 352:258–268.PubMedGoogle Scholar
  27. 27.
    Russo, T., Zambrano, N., Esposito, F., Ammendola, R., Cimino, F., Fiscella, M., O'Connor, P. M., Jackman, J., Anderson, C. W., and Appella, E. 1995. A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J. Biol. Chem. 270:29386–29391.PubMedGoogle Scholar
  28. 28.
    Gupta, K., Kashirsagar, S., Li, W., Gui, L., Ramakrishnan, S., Gupta, P., Law, P. Y., and Hebbel, R. P. 1999. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp. Cell Res. 247:495–504.PubMedGoogle Scholar
  29. 29.
    Esposito, F., Cuccovillo, F., Vanoni, M., Cimino, F., Anderson, C. W., Appella, E., and Russo, T. 1997. Redox-mediated regulation of p21waf1/cip1 expression involves a post-transcriptional mechanism and activation of the mitogen-activated protein kinase pathway. Eur. J. Biochem. 245:730–737.PubMedGoogle Scholar
  30. 30.
    Porcile, C., Stanzione, S., Piccioli, P., Bajetto, A., Barbero, S., Bisaglia, M., Bonavia, R., Florio, T., and Schettini, G. 2003. Pyroolidinedithiocarbamate induces apoptosis in cerebelar granule cells: Involvement of AP-1 and MAP kinases. Neurochem. Int. 43:31–38.PubMedGoogle Scholar
  31. 31.
    Herrera, B., Fernandez, M., Roncero, C., Ventura, J. J., Porras, A., Valladares, A., Benito, M., and Fabregat, I. 2001. Activation of p38MAPK by TGF-beta in fetal rat hepatocytes requires radical oxygen production, but is dispensable for cell death. FEBS Lett. 499:225–229.PubMedGoogle Scholar
  32. 32.
    Ushio-Fukai, M., Alexander, R. W., Akers, M., and Griedling, K. K. 1998. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II: Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem. 273:15022–15029.PubMedGoogle Scholar
  33. 33.
    Kamata, H. and Hirata, H. 1999. Redox regulation of cellular signalling. Cell. Signal. 11:1–14.PubMedGoogle Scholar
  34. 34.
    Fisher, E. H., Charbonneau, H., and Tonks, N. K. 1991. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 253:401–406.PubMedGoogle Scholar
  35. 35.
    Hecht, D. and Zick, Y. 1992. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem. Biophys. Res. Commun. 188:773–779.PubMedGoogle Scholar
  36. 36.
    Lee, S. R., Kwon, K. S., Kim, S. R., and Rhee, S. G. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:15366–15372.PubMedGoogle Scholar
  37. 37.
    Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L., Kennedy, B. P. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548.PubMedGoogle Scholar
  38. 38.
    Meng, T. C., Fukada, T., and Tonks, N. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9:387–399.PubMedGoogle Scholar
  39. 39.
    Esposito, F., Cuccovillo, F., Russo, L., Casella, F., Russo T., and Cimino, F. 1998. A new p21waf1/cip1 isoform is an early event of cell response to oxidative stress. Cell Death Differ. 5:940–945.PubMedGoogle Scholar
  40. 40.
    Esposito, F., Russo, L., Russo, T., and Cimino, F. 2000. Retinoblastoma protein dephosphorylation is an early event of cellular response to prooxidant conditions. FEBS Lett. 470:211–215.PubMedGoogle Scholar
  41. 41.
    Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.PubMedGoogle Scholar
  42. 42.
    Cimino, F., Esposito, F., Ammendola, R., and Russo, T. 1997. Gene regulation by reactive oxygen species. Curr. Top. Cell. Regul. 35:123–148.PubMedGoogle Scholar
  43. 43.
    Ammendola, R., Mesuraca, M., Russo, T., and Cimino, F. 1994. The DNA-binding efficiency of Sp1 is affected by redox changes. Eur. J. Biochem. 225:483–489.PubMedGoogle Scholar
  44. 44.
    Esposito, F., Cuccovillo, F., Morra, F., Russo, T., and Cimino, F. 1995. DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochim. Biophys. Acta 1260:308–314.PubMedGoogle Scholar
  45. 45.
    Ammendola, R., Mesuraca, M., Russo, T. and Cimino, F. 1992. Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues. J. Biol. Chem. 267:17944–17948.PubMedGoogle Scholar
  46. 46.
    Hutchison, K. A., Matic, G., Meshinchi, S., Bresnick, E. H., and Pratt, W. B. 1991. Redox manipulation of DNA binding activity and BuGR epitope reactivity of the glucocorticoid receptor. J. Biol. Chem. 266:10505–10509.PubMedGoogle Scholar
  47. 47.
    Esposito, F., Agosti, V., Morrone, G., Morra, F., Cuomo, C., Russo, T., Venuta, S., and Cimino, F. 1994. Inhibition of the differentiation of human myeloid cell lines by redox changes induced through glutathione depletion. Biochem. J. 301:649–653.PubMedGoogle Scholar
  48. 48.
    Ho, E. and Ames, B. N. 2002. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA 99:16770–16775.PubMedGoogle Scholar
  49. 49.
    Makino, Y., Okamoto, K., Yoshikawa, N., Aoshima, M., Hirota, K., Yodoi, J., Umesono, K., Makino, I., and Tanaka, H. 1996. Thioredoxin: A redox-regulating cellular cofactor for glucocorticoid hormone action—Cross talk between endocrine control of stress response and cellular antioxidant defense system. J. Clin. Invest. 98:2469–2477.PubMedGoogle Scholar
  50. 50.
    Hainaut, P. and Milner, J. 1993. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53:4469–4473.PubMedGoogle Scholar
  51. 51.
    Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. 1991. p53 mutations in human cancers. Science 253:49–53.PubMedGoogle Scholar
  52. 52.
    De Vries, E., Ricke, D. O., De Vries, T. N., Hartmann, A., Blaszyk, H., Liao, D., Soussi, T., Kovach, J. S., and Sommer, S. 1996. Database of mutations in the p53 and APC tumor suppressor genes designed to facilitate molecular epidemiological analyses. Hum. Mutat. 7:202–213.PubMedGoogle Scholar
  53. 53.
    Jayaraman, L., Murthy, K. G., Zhu, C., Curran, T., Xanthoudakis, S., and Prives, C. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11:558–570.PubMedGoogle Scholar
  54. 54.
    Gaiddon, C., Moorthy, N. C., and Prives, C. 1999. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 18:5609–5621.PubMedGoogle Scholar
  55. 55.
    Tanaka, T., Nakamura, H., Nishiyama, A., Hosoi, F., Masutani, H., Wada, H., and Yodoi, J. 2001. Redox regulation by thioredoxin superfamily: Protection against oxidative stress and aging. Free Radic. Res. 33:851–855.PubMedGoogle Scholar
  56. 56.
    Swada, M., Nakashima, S., Kiyono, T., Nakagawa, M., Yamada, J., Yamakawa, H., Banno, Y., Shinoda, J., Nishimura, Y., Nozawa, Y., Sakai, N. 2001. p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene 20:1368–1378.PubMedGoogle Scholar
  57. 57.
    Drane, P., Bravard, A., Bouvard, V., and May, E. 2001. Reciprocal down-regulation of p53 and SOD2 gene expression: Implication in p53 mediated apoptosis. Oncogene 20:430–439.PubMedGoogle Scholar
  58. 58.
    Xanthoudakis, S. and Curran, T. 1996. Redox regulation of AP-1: A link between transcription factor signaling and DNA repair. Adv. Exp. Med. Biol. 387:69–75.PubMedGoogle Scholar
  59. 59.
    Hill, C. S. and Treisman, R. 1995. Transcriptional regulation by extracellular signals: Mechanisms and specificity. Cell 80:199–211.PubMedGoogle Scholar
  60. 60.
    Treisman, R. 1995. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 14:4905–4913.PubMedGoogle Scholar
  61. 61.
    Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R., Sardana, M., Henderson, C. J., Wolf, C. R., Davis, R. J., Ronai, Z. 1999. Regulation of JNK signaling by GSTp. EMBO J. 18:1321–1334.PubMedGoogle Scholar
  62. 62.
    Abate, C., Patel, L., Rauscher, F. J. III, and Curran, T. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157–1161.PubMedGoogle Scholar
  63. 63.
    Freemerman, A. J., Gallegos, A., and Powis, G. 1999. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res. 59:4090–4094.PubMedGoogle Scholar
  64. 64.
    Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. 1997. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA 94:3633–3638.PubMedGoogle Scholar
  65. 65.
    Zen, K., Karsan, A., Stempien-Otero, A., Yee, E., Tupper, J., Li, X., Eunson, T., Kay, M. A., Wilson, C. B., Winn, R. K., and Harlan, J. M. 1999. NF-kappaB activation is required for human endothelial survival during exposure to tumor necrosis factor-alpha but not to interleukin-1beta or lipopolysaccharide. J. Biol. Chem. 274:28808–28815.PubMedGoogle Scholar
  66. 66.
    Bellas, R. E., Lee, J. S., and Sonenshein, G. E. 1995. Expression of a constitutive NF-kappa B-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J. Clin. Invest. 96:2521–2527.PubMedGoogle Scholar
  67. 67.
    Kaltschmidt, B., Sparna, T., and Kaltschmidt, C. 1999. Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxidant Redox Signal. 1:129–144.Google Scholar
  68. 68.
    Sen, C. K. and Packer, L. 1996. Antioxidant and redox regulation of gene transcription. FASEB J. 10:709–720.PubMedGoogle Scholar
  69. 69.
    Manna, S. K., Zhang, H. J., Yan, T., Oberley, L. W., and Aggarwal, B. B. 1998. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J. Biol. Chem. 273:13245–13254.PubMedGoogle Scholar
  70. 70.
    Wang, X., Martindale, J. L., Liu, Y., and Holbrook, N. J. 1998. The cellular response to oxidative stress: Influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem. J. 333:291–300.PubMedGoogle Scholar
  71. 71.
    Meyer, M., Schreck, R., and Bauerle, P. A. 1993. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12:2005–2015.PubMedGoogle Scholar
  72. 72.
    Toledano, M. B. and Leonard, W. J. 1991, Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. USA 88:4328–4332.PubMedGoogle Scholar
  73. 73.
    Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., and Yodoi, J. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus: A two-step mechanism of redox regulation of transcription factor NF-kappaB. J. Biol. Chem. 274:27861–27897.Google Scholar
  74. 74.
    Li, N. and Karin, M. 1999. Is NF-kappaB the sensor of oxidative stress? FASEB J. 13:1137–1143.PubMedGoogle Scholar
  75. 75.
    Gius, D., Botero, A., Shah, S., and Curry, H. A. 1999. Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol. Lett. 106:93–106.PubMedGoogle Scholar
  76. 76.
    Skala-Rubinson, H., Vinh, J., Labas, V., Kahn, A., and Phan, D. T. 2002. Novel target sequences for Pax-6 in the brain-specific activating regions of the rat aldolase C gene. J. Biol. Chem. 277:47190–47196.PubMedGoogle Scholar
  77. 77.
    Wang, Y., Crawford, D. R., and Davies, K. J. 1996. adapt 33: A novel oxidant-inducible RNA from hamster HA-1 cells. Arch. Biochem. Biophys. 332:255–260.PubMedGoogle Scholar
  78. 78.
    Crawford, D. R., Lehay, K. P., Abramova, N., Lan, L., Wang, Y., and Davies, K. J. 1997. Hamster adapt78 mRNA is a Down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 342:6–12.PubMedGoogle Scholar
  79. 79.
    Carper, D., Johnn, M., Chenn, Z., Subramaniann, S., Wangn, R., Ma, W., and Spector, A. 2001. Gene expression analysis of an H2O2-resistant lens epithelial cell line. Free Radic. Biol. Med. 31:90–97.PubMedGoogle Scholar
  80. 80.
    Tanaka, T., Kondo, S., Iwasa, Y., Hiain, H., and Toyokunin, S. 2000. Expression of stress-response and cell proliferation genes in renal cell carcinoma induced by oxidative stress. Am. J. Pathol. 156:2149–2157.PubMedGoogle Scholar
  81. 81.
    Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T., and Cimino, F. 1995. Differentially expressed mRNAs as a consequence of oxidative stress in intact cells. FEBS Lett. 371:209–213.PubMedGoogle Scholar
  82. 82.
    Nickenig, G., Baudler, S., Muller, C., Werner, C., Werner, N., Welzel, H., Strehlow, K., and Bohm, M. 2002. Redox-sensitive vascular smooth muscle cell proliferation is mediated by GKLF and Id3 in vitro and in vivo. FASEB J. 16:1077–1086.PubMedGoogle Scholar
  83. 83.
    Chinn, A. M., Ciais, D., Bailly, S., Chambaz, E., LaMarre, J., and Feige, J. J. 2002. Identification of two novel ACTH-responsive genes encoding manganese-dependent superoxide dismutase (SOD2) and the zinc finger protein TIS11b [tetradecanoyl phorbol acetate (TPA)-inducible sequence 11b]. Mol. Endocrinol. 16:1417–1427.PubMedGoogle Scholar
  84. 84.
    Sakamoto, K., Yamasaki, Y., Kaneto, H., Fujitani, Y., Matsuoka, T., Yoshioka, R., Tagawa, T., Matsuhisa, M., Kajimoto, Y., and Hori, M. 1999. Identification of a portable repression domain and an E1A-responsive activation domain in Pax 4: A possible role of Pax4 as a transcriptional repressor in the pancreas. FEBS Lett. 461:47–51.PubMedGoogle Scholar
  85. 85.
    Maulik, N. and Das, D. K. 1996. Molecular cloning, sequencing and expression analysis of a fatty acid transport gene in rat heart induced by ischemic preconditioning and oxidative stress. Mol. Cell Biochem.160–161:241–247.PubMedGoogle Scholar
  86. 86.
    Bek, M. J., Wahle, S., Muller, B., Benzing, T., Huber, T. B., Kretzler, M., Cohen, C., Busse-Grawitz, A., and Pavenstadt, H. 2003. Stra13, a prostaglandin E2-induced gene, regulates the cellular redox state of podocytes. FASEB J. 17:682–684.PubMedGoogle Scholar
  87. 87.
    Stuart, R. O., Bush, K. T., and Nigam, S. K. 2001. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc. Natl. Acad. Sci. USA 98:5649–5654.PubMedGoogle Scholar
  88. 88.
    Weindruch, R., Kayo, T., Lee, C. K., and Prolla, T. A. 2001. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J. Nutr. 131:918S–923S.PubMedGoogle Scholar
  89. 89.
    Kayo, T., Allison, D. B., Weindruch, R., and Prolla, T. A. 2001. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc. Natl. Acad. Sci. USA 98:5093–5098.PubMedGoogle Scholar
  90. 90.
    Lee, C. K., Klopp, R. G., Weindruch, R., and Prolla, T. A. 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393.PubMedGoogle Scholar
  91. 91.
    Kunsch, C. and Medford, R. M. 1999. Oxidative stress as a regulator of gene expression in the vasculature. Circul. Res. 85:753–766.Google Scholar
  92. 92.
    Serra, V., von Zglinicki, T., Lorenz, M., and Saretzki, G. 2003. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J. Biol. Chem. 278:6824–6830.PubMedGoogle Scholar
  93. 93.
    Mandel, S., Grunblatt, E., Maor, G., and Youdim, M. B. 2002. Early and late gene changes in MPTP mice model of Parkinson's disease employing cDNA microarray. Neurochem. Res. 27:1231–1243.PubMedGoogle Scholar
  94. 94.
    Finkel, T. and Holbrook, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247.PubMedGoogle Scholar
  95. 95.
    Harman, D. 1981. The aging process. Proc. Natl. Acad. Sci. USA 78:7124–7128.PubMedGoogle Scholar
  96. 96.
    Stadtman, E. R. 1992. Protein oxidation and aging. Science 257:1220–1224.PubMedGoogle Scholar
  97. 97.
    Beckman, K. B. and Ames, B. N. 1998. The free radical theory of aging matures. Physiol. Rev. 178:547–581.Google Scholar
  98. 98.
    Longo, V. D. and Finch, C. E. 2003. Evolutionary medicine: From dwarf model systems to healthy centenarians? Science 299:1342–1346.PubMedGoogle Scholar
  99. 99.
    Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P. C., Cervera, P., and Le Bouc, Y. 2003. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187.PubMedGoogle Scholar
  100. 100.
    Nemoto, S. and Finkel, T. 2002. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452.PubMedGoogle Scholar
  101. 101.
    Furukawa-Hibi, Y., Yoshida-Araki, K., Ohta, T., Ikeda, K., and Motoyama, N. 2002. FOXO forkhead transcription factors induce G2-M checkpoint in response to oxidative stress. J. Biol. Chem. 277:26729–26732.PubMedGoogle Scholar
  102. 102.
    Hayflick, L. 1965. The limited “in vitro” life time of human diploid cell strains. Exp. Cell Res. 37:614–636.PubMedGoogle Scholar
  103. 103.
    Hayflick, L. and Moorhead, P. S. 1961 The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621.Google Scholar
  104. 104.
    Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., and Campisi, J. 1995. A biomarker that identifies senescent human cells in culture and in aging skin “in vivo.” Proc. Natl. Acad. Sci. USA 92:9363–9367.PubMedGoogle Scholar
  105. 105.
    Campisi, J. 2000. Cancer, aging and cellular senescence. In Vivo 14:183–188.PubMedGoogle Scholar
  106. 106.
    Wang, E. 1995. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55:2284–2292.PubMedGoogle Scholar
  107. 107.
    Campisi, J. 2001. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11:S27–S31.PubMedGoogle Scholar
  108. 108.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.PubMedGoogle Scholar
  109. 109.
    Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12:2997–3007.PubMedGoogle Scholar
  110. 110.
    Lin, A. W., Barradas, M., Stone, J. C., van Aelst, L., Serrano, M., and Lowe, S. W. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12:3008–3019.PubMedGoogle Scholar
  111. 111.
    Dimri, G. P., Itahana, K., Acosta, M., and Campisi, J. 2000. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell Biol. 20:273–285.PubMedGoogle Scholar
  112. 112.
    Harley, C. B., Futcher, A. B., and Greider, C. W. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460.PubMedGoogle Scholar
  113. 113.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chui, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichsteiner, S., and Wright, W. E. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352.PubMedGoogle Scholar
  114. 114.
    Campisi, J., Dimri, G. P., and Hara, E. 1996. Control of replicative senescence. Pages 121–149, in Schneider E. and Rowe J. (ed.), Handbook of the Biology of Aging, 4th ed., Academic Press, New York.Google Scholar
  115. 115.
    Dimri, G. P. and Campisi, J. 1994. Molecular and cell biology of replicative senescence. Cold Spring Harb. Symp. Quant. Biol. 59:67–73.PubMedGoogle Scholar
  116. 116.
    Stein, G. H., Beeson, M., and Gordon, L. 1990. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669PubMedGoogle Scholar
  117. 117.
    Dimri, G. P., Nakanishi, M., Desprez, P. Y., Smith, J. R., and Campisi, J. 1996. Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol. Cell Biol. 16:2987–2997PubMedGoogle Scholar
  118. 118.
    Schneider, E. L. and Mitsui, Y. 1976. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73:3584–3588.PubMedGoogle Scholar
  119. 119.
    Bruce, S. A., Deadmond, S. F., and Ts'o, P. O. 1986. In vitro senescence of Syrian hamster mesenchymal cells of fetal to aged adult origin: Inverse relationship between in vivo donor age and in vitro proliferative capacity. Mech. Ageing Dev. 34:151–173.PubMedGoogle Scholar
  120. 120.
    Smith, J. R., Pereira-Smith, O. M., and Schneider, E. L. 1978. Colony size distributions as a measure of in vivo and in vitro aging. Proc. Natl. Acad. Sci. USA 75:1353–1356.PubMedGoogle Scholar
  121. 121.
    Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W., and Harley, C. P. 1992. Telomere length predicts replicative capacity of human fibroblats. Proc. Natl. Acad. Sci. USA 89:10114–10118.PubMedGoogle Scholar
  122. 122.
    Martin, G. M., Sprague, C. A., and Epstein, C. J. 1970. Replicative life-span of cultivated human cells: Effects of donor's age, tissue, and genotype. Lab. Invest. 23:86–92.PubMedGoogle Scholar
  123. 123.
    Oshima, J., Campisi, J., Tannock, T. C., and Martin, G. M. 1995. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell Physiol. 162:277–283.PubMedGoogle Scholar
  124. 124.
    Goldstein, S. and Harley, C. B. 1979. In vitro studies of age-associated diseases. Fed. Proc. 38:1862–1867.PubMedGoogle Scholar
  125. 125.
    Danes, B. S. 1971. Progeria: A cell culture study on aging. J. Clin. Invest. 50:2000–2003.PubMedGoogle Scholar
  126. 126.
    Schneider, E. L. and Epstein, C. J. 1972. Replication rate and lifespan of cultured fibroblasts in Down's syndrome. Proc. Soc. Exp. Biol. Med. 141:1092–1094.PubMedGoogle Scholar
  127. 127.
    Cristofalo, V. J., Allen, R. G., Pignolo, R. J., Martin, B. G., and Beck, J. C. 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl. Acad. Sci. USA 95:10614–10619.PubMedGoogle Scholar
  128. 128.
    Faraonio, R., Pane, F., Intrieri, M., Russo, T., and Cimino, F. 2002. In vitro acquired cellular senescence and aging-specific phenotype can be distinguished on the basis of specific mRNA expression. Cell Death Differ. 9:862–864.PubMedGoogle Scholar
  129. 129.
    Toussaint, O., Royer, V., Salmon, M., and Remacle, J. 2002. Stress-induced premature senescence and tissue ageing. Biochem. Pharmacol. 64:1007–1009.PubMedGoogle Scholar
  130. 130.
    Chen, Q. and Ames, B. N. 1994. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91:4130–4134.PubMedGoogle Scholar
  131. 131.
    Chen, Q., Bartholomew, J. C., Campisi, J., Acosta, M., Reagen, J. D., Chen, Q. M., and Ames, B. N. 1998. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332:43–50.PubMedGoogle Scholar
  132. 132.
    Chen, Q. M., Prowse, K. R., Tu, V. C., Purdom, S., and Linskens, M. H. 2001. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp. Cell Res. 265:294–303.PubMedGoogle Scholar
  133. 133.
    Allen, R. G. and Tresini, M. 2000. Oxidative stress and gene regulation. Free Radic. Biol. Med. 28:463–499.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Franca Esposito
    • 1
  • Rosario Ammendola
    • 1
  • Raffaella Faraonio
    • 1
  • Tommaso Russo
    • 1
  • Filiberto Cimino
    • 1
  1. 1.Dipartimento di Biochimica e Biotecnologie MedicheUniversità di Napoli Federico IINaplesItaly

Personalised recommendations