Neurochemical Research

, Volume 29, Issue 3, pp 601–608 | Cite as

Astrocyte Mitochondrial Mechanisms of Ischemic Brain Injury and Neuroprotection


Research on ischemic brain injury has established a central role of mitochondria in neuron death (1–3). Astrocytes are also damaged by ischemia (4), although the participation of mitochondria in their injury is ill defined. As astrocytes are responsible for neuronal metabolic and trophic support, astrocyte dysfunction (5) will compromise postischemic neuronal survival. Ischemic alterations to astrocyte energy metabolism and the uptake and metabolism of the excitatory amino acid transmitter glutamate may be particularly important. Despite the significance of ischemic astrocyte injury, little is known of the mechanisms responsible for astrocyte death and dysfunction. This review focuses on differences between astrocyte and neuronal metabolism and mitochondrial function, and on neuronal–glial interactions. The potential for astrocyte mitochondria to serve as targets of neuroprotective interventions is also discussed.

Apoptosis calcium glutamate lactate metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kristian, T. and Siesjo, B. K. 1998. Calcium in ischemic cell death. Stroke 29:705–718.PubMedGoogle Scholar
  2. 2.
    Fiskum, G., Murphy, A. N., and Beal, M. F. 1999. Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19:351–369.PubMedGoogle Scholar
  3. 3.
    Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431–1568.PubMedGoogle Scholar
  4. 4.
    Petito, C. K., Olarte, J. P., Roberts, B., Nowak, T. S. J., and Pulsinelli, W. A. 1998. Selective glial vulnerability following transient global ischemia in rat brain. J. Neuropathol. Exp. Neurol. 57:231–238.PubMedGoogle Scholar
  5. 5.
    Liu, D., Smith, C. L., Barone, F. C., Ellison, J. A., Lysko, P. G., Li, K., and Simpson, I. A. 1999. Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res. Mol. Brain Res. 68:29–41.PubMedGoogle Scholar
  6. 6.
    Erecinska, M. and Silver, I. A. 1994. Ions and energy in mammalian brain. Prog. Neurobiol. 43:37–71.PubMedGoogle Scholar
  7. 7.
    Hansen, A. J. 1985. Effect of anoxia on ion distribution in the brain. Physiol Rev. 65:101–148.PubMedGoogle Scholar
  8. 8.
    Chol, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.PubMedGoogle Scholar
  9. 9.
    Morley, P., Hogan, M. J., and Hakim, A. M. 1994. Calcium-mediated mechanisms of ischemic injury and protection. Brain Pathol. 4:37–47.PubMedGoogle Scholar
  10. 10.
    Siesjo, B. K., Katsura, K., Zhao, Q., Folbergrova, J., Pahlmark, K., Siesjo, P., and Smith, M. L. 1995. Mechanisms of secondary brain damage in global and focal ischemia: A speculative synthesis. J. Neurotrauma 12:943–956.PubMedGoogle Scholar
  11. 11.
    Tymianski, M. and Tator, C. H. 1996. Normal and abnormal calcium homeostasis in neurons: A basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38:1176–1195.PubMedGoogle Scholar
  12. 12.
    Budd, S. L. and Nicholls, D. G. 1996. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67:2282–2291.PubMedGoogle Scholar
  13. 13.
    Bondarenko, A. and Chesler, M. 2001. Calcium dependence of rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:143–149.PubMedGoogle Scholar
  14. 14.
    Fiskum, G. 2000. Mitochondrial participation in ischemic and traumatic neural cell death. J. Neurotrauma 17:843–855.PubMedGoogle Scholar
  15. 15.
    Silver, I. A. and Erecinska, M. 1992. Ion homeostasis in rat brain in vivo: Intra-and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J. Cereb. Blood Flow Metab. 12:759–772.PubMedGoogle Scholar
  16. 16.
    Dux, E., Mies, G., Hossmann, K. A., and Siklos, L. 1987. Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci. Lett. 78:295–300.PubMedGoogle Scholar
  17. 17.
    Zaidan, E. and Sims, N. R. 1994. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J. Neurochem. 63:1812–1819.PubMedGoogle Scholar
  18. 18.
    Sims, N. R. and Pulsinelli, W. A. 1987. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 49:1367–1374.PubMedGoogle Scholar
  19. 19.
    Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M., and Chan, P. H. 1998. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 18:1239–1247.PubMedGoogle Scholar
  20. 20.
    Perez-Pinzon, M. A., Xu, G. P., Born, J., Lorenzo, J., Busto, R., Rosenthal, M., and Sick, T. J. 1999. Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J. Cereb. Blood Flow Metab. 19:39–43.PubMedGoogle Scholar
  21. 21.
    Sugawara, T., Fujimura, M., Morita-Fujimura, Y., Kawase, M., and Chan, P. H. 1999. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J. Neurosci. 19:RC39.PubMedGoogle Scholar
  22. 22.
    Nakahara, I., Kikuchi, H., Taki, W., Nishi, S., Kito, M., Yonekawa, Y., Goto, Y., and Ogata, N. 1992. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J. Neurosurg. 76:244–250.PubMedGoogle Scholar
  23. 23.
    Gilboe, D. D., Kintner, D., Fitzpatrick, J. H., Emoto, S. E., Esanu, A., Braquet, P. G., and Bazan, N. G. 1991. Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J. Neurochem. 56:311–319.PubMedGoogle Scholar
  24. 24.
    Wagner, K. R., Kleinholz, M., and Myers, R. E. 1990. Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia. J. Neurol. Sci. 100:142–151.PubMedGoogle Scholar
  25. 25.
    Schild, L., Huppelsberg, J., Kahlert, S., Keilhoff, G., and Reiser, G. 2003. Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological desintegration. J. Biol. Chem. (2003).Google Scholar
  26. 26.
    Polster, B. M., Kinnally, K. W., and Fiskum, G. 2001. Bh3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability. J. Biol. Chem. 276:37887–37894.PubMedGoogle Scholar
  27. 27.
    Smith, M. L., Auer, R. N., and Siesjo, B. K. 1984. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. (Berl.) 64:319–332.Google Scholar
  28. 28.
    Pulsinelli, W. A., Brierley, J. B., and Plum, F. 1982. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11:491–498.PubMedGoogle Scholar
  29. 29.
    Ito, U., Spatz, M., Walker, J. T. Jr., and Klatzo, I. 1975. Experimental cerebral ischemia in mongolian gerbils: I. Light microscopic observations. Acta Neuropathol. (Berl.) 32:209–223.Google Scholar
  30. 30.
    Siesjo, B. K., Katsura, K., and Kristian, T. 1996. Acidosis-related damage. Adv. Neurol. 71:209–233.PubMedGoogle Scholar
  31. 31.
    Garcia, J. H., Cox, J. V., and Hudgins, W. R. 1971. Ultrastructure of the microvasculature in experimental cerebral infarction. Acta Neuropathol. (Berl.) 18:273–285.Google Scholar
  32. 32.
    Garcia, J. H., Kalimo, H., Kamijyo, Y., and Trump, B. F. 1977. Cellular events during partial cerebral ischemia: I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch. B Cell. Pathol. 25:191–206.PubMedGoogle Scholar
  33. 33.
    Lukaszevicz, A. C., Sampaio, N., Guegan, C., Benchoua, A., Couriaud, C., Chevalier, E., Sola, B., Lacombe, P., and Onteniete, B. 2002. High sensitivity of protoplasmic cortical astroglia to focal ischemia. J. Cereb. Blood Flow Metab. 22:289–298.PubMedGoogle Scholar
  34. 34.
    Xu, L., Sapolsky, R. M., and Giffard, R. G. 2001. Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp. Neurol. 169:416–424.PubMedGoogle Scholar
  35. 35.
    Pantoni, L., Garcia, J. H., and Gutierrez, J. A. 1996. Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646.PubMedGoogle Scholar
  36. 36.
    Clark, J. B. and Nicklas, W. J. 1970. The metabolism of rat brain mitochondria: Preparation and characterization. J. Biol. Chem. 245:4724–4731.PubMedGoogle Scholar
  37. 37.
    Lai, J. C. and Clark, J. B. 1976. Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154:423–432.PubMedGoogle Scholar
  38. 38.
    Booth, R. F. and Clark, J. B. 1979. A method for the rapid separation of soluble and particulate components of rat brain synaptosomes. FEBS Lett. 107:387–392.PubMedGoogle Scholar
  39. 39.
    Leong, S. F., Lai, J. C., Lim, L., and Clark, J. B. 1984. The activities of some energy-metabolising enzymes in nonsynaptic (free) and synaptic mitochondria derived from selected brain regions. J. Neurochem. 42:1306–1312.PubMedGoogle Scholar
  40. 40.
    Davey, G. P., Canevari, L., and Clark, J. B. 1997. Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J. Neurochem. 69:2564–2570.PubMedGoogle Scholar
  41. 41.
    Reichert, S. A., Kim-Han, J. S., and Dugan, L. L. 2001. The mitochondrial permeability transition pore and nitric oxide synthase mediate early mitochondrial depolarization in astrocytes during oxygen-glucose deprivation. J. Neurosci. 21:6608–6616.PubMedGoogle Scholar
  42. 42.
    Zhao, G. and Flavin, M. P. 2000. Differential sensitivity of rat hippocampal and cortical astrocytes to oxygen-glucose deprivation injury. Neurosci. Lett. 285:177–180.PubMedGoogle Scholar
  43. 43.
    Almeida, A., Delgado-Esteban, M., Bolanos, J. P., and Medina, J. M. 2002. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J. Neurochem. 81:207–217.PubMedGoogle Scholar
  44. 44.
    Swanson, R. A., Farrell, K., and Stein, B. A. 1997. Astrocyte energetics, function, and death under conditions of incomplete ischemia: A mechanism of glial death in the penumbra. Glia 21:142–153.PubMedGoogle Scholar
  45. 45.
    Bondarenko, A. and Chesler, M. 2001. Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:134–142.PubMedGoogle Scholar
  46. 46.
    Papadopoulos, M. C., Koumenis, I. L., Dugan, L. L., and Giffard, R. G. 1997. Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res. 748:151–156.PubMedGoogle Scholar
  47. 47.
    Robb, S. J. and Connor, J. R. 1998. An in vitro model for analysis of oxidative death in primary mouse astrocytes. Brain Res. 788:125–132.PubMedGoogle Scholar
  48. 48.
    Chen, D., Lan, J., Pei, W., and Chen, J. 2000. Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J. Neurosci. Res. 61:225–236.PubMedGoogle Scholar
  49. 49.
    Castilho, R. F., Hansson, O., Ward, M. W., Budd, S. L., and Nicholls, D. G. 1998. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 18:10277–10286.PubMedGoogle Scholar
  50. 50.
    Ward, M. W., Rego, A. C., Frenguelli, B. G., and Nicholls, D. G. 2000. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20:7208–7219.PubMedGoogle Scholar
  51. 51.
    Rego, A. C., Ward, M. W., and Nicholls, D. G. 2001. Mitochondria control ampa/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J. Neurosci. 21:1893–1901.PubMedGoogle Scholar
  52. 52.
    Bullock, R. and Fujisawa, H. 1992. The role of glutamate antagonists for the treatment of CNS injury. J. Neurotrauma 9(Suppl 2):S443–S462.PubMedGoogle Scholar
  53. 53.
    Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. 1996. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.PubMedGoogle Scholar
  54. 54.
    Anderson, C. M. and Swanson, R. A. 2000. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32:1–14.PubMedGoogle Scholar
  55. 55.
    Miralles, V. J., Martinez-Lopez, I., Zaragoza, R., Borras, E., Garcia, C., Pallardo, F. V., and Vina, J. R. 2001. Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: Effect of oxidative stress. Brain Res. 922:21–29.PubMedGoogle Scholar
  56. 56.
    Fukamachi, S., Furuta, A., Ikeda, T., Ikenoue, T., Kaneoka, T., Rothstein, J. D., and Iwaki, T. 2001. Altered expression of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Brain Res. Dev. Brain Res. 132:131–139.PubMedGoogle Scholar
  57. 57.
    Torp, R., Lekieffre, D., Levy, L. M., Haug, F. M., Danbolt, N. C., Meldrum, B. S., and Ottersen, O. P. 1995. Reduced postischemic expression of a glial glutamate transporter, GLT1, in the rat hippocampus. Exp. Brain Res. 103:51–58.PubMedGoogle Scholar
  58. 58.
    Rao, V. L. R., Rao, A. M., Dogan, A., Bowen, K. K., Hatcher, J., Rothstein, J. D., and Dempsey, R. J. 2000. Glial glutamate transporter GLT-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia. Neurochem. Int. 36:531–537.PubMedGoogle Scholar
  59. 59.
    Martin, L. J., Brambrink, A. M., Lehmann, C., Portera-Cailliau, C., Koehler, R., Rothstein, J., and Traystman, R. J. 1997. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann. Neurol. 42:335–348.PubMedGoogle Scholar
  60. 60.
    Inage, Y. W., Itoh, M., Wada, K., and Takashima, S. 1998. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: Their correlation in development and neonatal hypoxic-ischemic damage. J. Neuropathol. Exp. Neurol. 57:554–562.PubMedGoogle Scholar
  61. 61.
    Rao, V. L., Dogan, A., Todd, K. G., Bowen, K. K., Kim, B. T., Rothstein, J. D., and Dempsey, R. J. 2001. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J. Neurosci. 21:1876–1883.PubMedGoogle Scholar
  62. 62.
    Innocenti, B., Parpura, V., and Haydon, P. G. 2000. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20:1800–1808.PubMedGoogle Scholar
  63. 63.
    Pasti, L., Volterra, A., Pozzan, T., and Carmignoto, G. 1997. Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17:7817–7830.PubMedGoogle Scholar
  64. 64.
    Phillis, J. W. and O'Regan, M. H. 1996. Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res. 730:150–164.PubMedGoogle Scholar
  65. 65.
    Seki, T. and Arai, Y. 1999. Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus. J. Comp. Neurol. 410:115–125.PubMedGoogle Scholar
  66. 66.
    Pasti, L., Zonta, M., Pozzan, T., Vicini, S., and Carmignoto, G. 2001. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci. 21:477–484.PubMedGoogle Scholar
  67. 67.
    Araque, A., Li, N., Doyle, R. T., and Haydon, P. G. 2000. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.PubMedGoogle Scholar
  68. 68.
    Liu, S. Y. 1990. [Protective effects of vitamin E and selenium on myocardial mitochondria in rats: A study on the pathogenic factors and pathogenesis of Keshan disease], Chung. Hua. Yu. Fang. I. Hsueh. Tsa. Chih. 24:214–216.PubMedGoogle Scholar
  69. 69.
    McConkey, D. J., Nicotera, P., and Orrenius, S. 1994. Signalling and chromatin fragmentation in thymocyte apoptosis. Immunol. Rev. 142:343–363.PubMedGoogle Scholar
  70. 70.
    Anderson, M. F. and Sims, N. R. 2002. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J. Neurochem. 81:541–549.PubMedGoogle Scholar
  71. 71.
    Dringen, R., Gutterer, J. M., and Hirrlinger, J. 2000. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 267:4912–4916.PubMedGoogle Scholar
  72. 72.
    Bona, E., Hagberg, H., Loberg, E. M., Bagenholm, R., and Thoresen, M. 1998. Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: Short-and long-term outcome. Pediatr. Res. 43:738–745.PubMedGoogle Scholar
  73. 73.
    Chen, Y., Vartiainen, N. E., Ying, W., Chan, P. H., Koistinaho, J., and Swanson, R. A. 2001. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77:1601–1610.PubMedGoogle Scholar
  74. 74.
    Dringen, R., Gebhardt, R., and Hamprecht, B. 1993. Glycogen in astrocytes: Possible function as lactate supply for neighboring cells. Brain Res. 623:208–214.PubMedGoogle Scholar
  75. 75.
    Niitsu, Y., Hori, O., Yamaguchi, A., Bando, Y., Ozawa, K., Tamatani, M., Ogawa, S., and Tohyama, M. 1999. Exposure of cultured primary rat astrocytes to hypoxia results in intracellular glucose depletion and induction of glycolytic enzymes. Brain Res. Mol. Brain Res. 74:26–34.PubMedGoogle Scholar
  76. 76.
    Liu, Y., Rosenthal, R. E., Starke-Reed, P., and Fiskum, G. 1993. Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine. Free Radic. Biol. Med. 15:667–670.PubMedGoogle Scholar
  77. 77.
    Rosenthal, R. E., Williams, R., Bogaert, Y. E., Getson, P. R., and Fiskum, G. 1992. Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine. Stroke 23:1312–1317.PubMedGoogle Scholar
  78. 78.
    Lolic, M. M., Fiskum, G., and Rosenthal, R. E. 1997. Neuroprotective effects of acetyl-L-carnitine after stroke in rats. Ann. Emerg. Med. 29:758–765.PubMedGoogle Scholar
  79. 79.
    Bogaert, Y. E., Rosenthal, R. E., and Fiskum, G. 1994. Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Rad. Biol. Med. 16:811–820.PubMedGoogle Scholar
  80. 80.
    Calvani, M. and Arrigoni-Martelli, E. 1999. Attenuation by acetyl-L-carnitine of neurological damage and biochemical derangement following brain ischemia and reperfusion. Int. J. Tissue React. 21:1–6.PubMedGoogle Scholar
  81. 81.
    Bouzier, A. K., Thiaudiere, E., Biran, M., Rouland, R., Canioni, P., and Merle, M. 2000. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem. 75:480–486.PubMedGoogle Scholar
  82. 82.
    Bernardi, P., Broekemeier, K. M., and Pfeiffer, D. R. 1994. Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26:509–517.PubMedGoogle Scholar
  83. 83.
    Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M. 1997. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol. Cell Biochem. 174:167–172.PubMedGoogle Scholar
  84. 84.
    Zoratti, M. and Szabo, I. 1995. The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176.PubMedGoogle Scholar
  85. 85.
    Gunter, T. E. and Pfeiffer, D. R. 1990. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786.PubMedGoogle Scholar
  86. 86.
    Bernardi, P. and Petronilli, V. 1996. The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. J. Bioenerg. Biomembr. 28:131–138.PubMedGoogle Scholar
  87. 87.
    Bernardi, P. 1999. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev. 79:127–1155.Google Scholar
  88. 88.
    Kristal, B. S. and Dubinsky, J. M. 1997. Mitochondrial permeability transition in the central nervous system: Induction by calcium cycling-dependent and-independent pathways. J. Neurochem. 69:524–538.PubMedGoogle Scholar
  89. 89.
    Andreyev, A., Fahy, B., and Fiskum, G. 1998. Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Lett. 439:373–376.PubMedGoogle Scholar
  90. 90.
    Kristian, T., Gertsch, J., Bates, T. E., and Siesjo, B. K. 2000. Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: Effect of cyclosporin A and ubiquinone O. J. Neurochem. 74:1999–2009.PubMedGoogle Scholar
  91. 91.
    Fiskum, G., Bambrick, L., Kristian, T., Chandrasekaran, K., and Chinopoulos, C. 2003. Calcium-induced damage to neuron, astrocyte, and brain mitochondria [Abstract]. J. Neurochem. 85(Suppl. 1):56.Google Scholar
  92. 92.
    Bai, G., Rama Rao, K. V., Murthy, C. R., Panickar, K. S., Jayakumar, A. R., and Norenberg, M. D. 2001. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66:981–991.PubMedGoogle Scholar
  93. 93.
    Uchino, H., Elmer, E., Uchino, K., Lindvall, O., and Siesjo, B. K. 1995. Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol. Scand. 155:469–471.PubMedGoogle Scholar
  94. 94.
    Uchino, H., Elmer, E., Uchino, K., Li, P. A., He, Q. P., Smith, M. L., and Siesjo, B. K. 1998. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 812:216–226.PubMedGoogle Scholar
  95. 95.
    Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P., and Wieloch, T. 1998. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J. Neurosci. 18:5151–5159.PubMedGoogle Scholar
  96. 96.
    Yoshimoto, T. and Siesjo, B. K. 1998. Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia. Brain Res. 839:283–291.Google Scholar
  97. 97.
    Schurr, A. 2002. Lactate, glucose and energy metabolism in the ischemic brain [Review]. Int. J. Mol. Med. 10:131–136.PubMedGoogle Scholar
  98. 98.
    Starkov, A. A., Polster, B. M., and Fiskum, G. 2002. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J. Neurochem. 83:220–228.PubMedGoogle Scholar
  99. 99.
    Kroemer, G. and Reed, J. C. 2000. Mitochondrial control of cell death. Nat. Med. 6:513–519.PubMedGoogle Scholar
  100. 100.
    Naderi, J., Hung, M., and Pandey, S. 2003. Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: Resistance of quiescent cells to oxidative stress. Apoptosis 8:91–100.PubMedGoogle Scholar
  101. 101.
    Cao, G., Minami, M., Pei, W., Yan, C., Chen, D., O'Horo, C., Graham, S. H., and Chen, J. 2001. Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J. Cereb. Blood Flow Metab. 21:321–333.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Linda Bambrick
    • 1
    • 2
    • 3
  • Tibor Kristian
    • 1
  • Gary Fiskum
    • 1
    • 2
  1. 1.Department of AnesthesiologyUniversity of Maryland School of MedicineBaltimore
  2. 2.Program in NeuroscienceUniversity of Maryland School of MedicineBaltimore
  3. 3.Department of PhysiologyUniversity of Maryland School of MedicineBaltimore

Personalised recommendations