Neurochemical Research

, Volume 29, Issue 3, pp 569–577 | Cite as

Initiation of Neuronal Damage by Complex I Deficiency and Oxidative Stress in Parkinson's Disease


Oxidative stress and partial deficiencies of mitochondrial complex I appear to be key factors in the pathogenesis of Parkinson's disease. They are interconnected; complex I inhibition results in an enhanced production of reactive oxygen species (ROS), which in turn will inhibit complex I. Partial inhibition of complex I in nerve terminals is sufficient for in situ mitochondria to generate more ROS. H2O2 plays a major role in inhibiting complex I as well as a key metabolic enzyme, α-ketoglutarate dehydrogenase. The vicious cycle resulting from partial inhibition of complex I and/or an inherently higher ROS production in dopaminergic neurons leads over time to excessive oxidative stress and ATP deficit that eventually will result in cell death in the nigro-striatal pathway.

Oxidative stress complex I deficiency Parkinson's disease reactive oxygen species dopaminergic neurons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mizuno, Y., Hattori, N., and Matsumine, H. 1998. Neurochemical and neurogenetic correlates of Parkinson's disease. J. Neurochem. 71:893–902.PubMedGoogle Scholar
  2. 2.
    Mizuno, Y., Yoshino, H., Ikebe, S., Hattori, N., Kobayashi, T., Shimoda-Matsubayashi, S., Matsumine, H., and Kondo, T. 1998. Mitochondrial dysfunction in Parkinson's disease. Ann. Neurol. 44:S99–S109.PubMedGoogle Scholar
  3. 3.
    Orth, M. and Schapira, A. H. 2002. Mitochondrial involvement in Parkinson's disease. Neurochem. Int. 40:533–541.PubMedGoogle Scholar
  4. 4.
    Walker, J. E. 1992. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25:253–324.PubMedGoogle Scholar
  5. 5.
    Kosel, S., Grasbon-Frodl, E. M., Mautsch, U., Egensperger, R., von Eitzen, U., Frishman, D., Hofmann, S., Gerbitz, K. D., Mehraein, P., and Graeber, M. B. 1998. Novel mutations of mitochondrial complex I in pathologically proven Parkinson disease. Neurogenetics 1:197–204.PubMedGoogle Scholar
  6. 6.
    Petruzzella, V. and Papa, S. 2002. Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: The NDUFS4 gene. Gene 286:149–154.PubMedGoogle Scholar
  7. 7.
    Nicklas, W. J., Vyas, I., and Heikkila, R. E. 1985. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36:2503–2508.PubMedGoogle Scholar
  8. 8.
    Ramsay, R. R., Salach, J. I., Dadgar, J., and Singer, T. P. 1986. Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem. Biophys. Res. Commun. 135:269–275.PubMedGoogle Scholar
  9. 9.
    Tipton, K. F. and Singer, T. P. 1993. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 61:1191–1206.PubMedGoogle Scholar
  10. 10.
    Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.PubMedGoogle Scholar
  11. 11.
    Langston, J. W., Forno, L. S., Rebert, C. S., and Irwin, I. 1984. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res. 292:390–394.PubMedGoogle Scholar
  12. 12.
    Ricaurte, G. A., Langston, J. W., Delanney, L. E., Irwin, I., Peroutka, S. J., and Forno, L. S. 1986. Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A neurochemical and morphological reassessment. Brain Res. 376:117–124.PubMedGoogle Scholar
  13. 13.
    Kaakkola, S. and Teravainen, H. 1990. Animal models of parkinsonism. Pharmacol. Toxicol. 67:95–100.PubMedGoogle Scholar
  14. 14.
    Parker, W. D. Jr., Boyson, S. J., and Parks, J. K. 1989. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26:719–723.PubMedGoogle Scholar
  15. 15.
    Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., and Marsden, C. D. 1989. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1:1269.PubMedGoogle Scholar
  16. 16.
    Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823–827.PubMedGoogle Scholar
  17. 17.
    Mann, V. M., Cooper, J. M., Krige, D., Daniel, S. E., Schapira, A. H., and Marsden, C. D. 1992. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson's disease. Brain 115:333–342.PubMedGoogle Scholar
  18. 18.
    Cardellach, F., Marti, M. J., Fernandez-Sola, J., Marin, C., Hoek, J. B., Tolosa, E., and Urbano-Marquez, A. 1993. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson's disease. Neurology 43:2258–2262.PubMedGoogle Scholar
  19. 19.
    Sheehan, J. P., Swerdlow, R. H., Parker, W. D., Miller, S. W., Davis, R. E., and Tuttle, J. B. 1997. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease. J. Neurochem. 68:1221–1233.PubMedGoogle Scholar
  20. 20.
    Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., and Greenamyre, J. T. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3:1301–1306.PubMedGoogle Scholar
  21. 21.
    Swerdlow, R. H., Parks, J. K., Davis, J. N., Cassarino, D. S., Trimmer, P. A., Currie, L. J., Dougherty, J., Bridges, W. S., Bennett, J. P. Jr., Wooten, G. F., and Parker, W. D. 1998. Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson's disease family. Ann. Neurol. 44:873–881.PubMedGoogle Scholar
  22. 22.
    Jenner, P. 2001. Parkinson's disease, pesticides and mitochondrial dysfunction. Trends Neurosci. 24:245–247.PubMedGoogle Scholar
  23. 23.
    Cassarino, D. S. and Bennett, J. P. Jr. 1999. An evaluation of the role of mitochondria in neurodegenerative diseases: Mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res. Brain Res. Rev. 29:1–25.PubMedGoogle Scholar
  24. 24.
    Schapira, A. H. 1999. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410:159–170.PubMedGoogle Scholar
  25. 25.
    Giasson, B. I., Ischiropoulos, H., Lee, V. M., and Trojanowski, J. Q. 2002. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's disease. Free Radic. Biol. Med. 32:1264–1275.PubMedGoogle Scholar
  26. 26.
    Schon, E. A. and Manfredi, G. 2003. Neuronal degeneration and mitochondrial dysfunction. J. Clin. Invest 111:303–312.PubMedGoogle Scholar
  27. 27.
    Bindoff, L. A., Birch-Machin, M. A., Cartlidge, N. E., Parker, W. D. Jr., and Turnbull, D. M. 1991. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J. Neurol. Sci. 104:203–208.PubMedGoogle Scholar
  28. 28.
    Barroso, N., Campos, Y., Huertas, R., Esteban, J., Molina, J. A., Alonso, A., Gutierrez-Rivas, E., and Arenas, J. 1993. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin. Chem. 39:667–669.PubMedGoogle Scholar
  29. 29.
    Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S. 1994. An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson's disease. Ann. Neurol. 35:204–210.PubMedGoogle Scholar
  30. 30.
    Noll, T., Koop, A., and Piper, H. M. 1992. Mitochondrial ATP-synthase activity in cardiomyocytes after aerobic-anaerobic metabolic transition. Am. J. Physiol 262:C1297–C1303.PubMedGoogle Scholar
  31. 31.
    Singer, T. P. and Ramsay, R. R. 1990. Mechanism of the neurotoxicity of MPTP: An update. FEBS Lett. 274:1–8.PubMedGoogle Scholar
  32. 32.
    Davey, G. P. and Clark, J. B. 1996. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J. Neurochem. 66:1617–1624.PubMedGoogle Scholar
  33. 33.
    Davey, G. P., Peuchen, S., and Clark, J. B. 1998. Energy thresholds in brain mitochondria: Potential involvement in neurodegeneration. J. Biol. Chem. 273:12753–12757.PubMedGoogle Scholar
  34. 34.
    Chinopoulos, C. and Adam-Vizi, V. 2001. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: Relevance to Parkinson's disease. J. Neurochem. 76:302–306.PubMedGoogle Scholar
  35. 35.
    Scott, I. D. and Nicholls, D. G. 1980. Energy transduction in intact synaptosomes: Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem. J. 186:21–33.PubMedGoogle Scholar
  36. 36.
    Budd, S. L. and Nicholls, D. G. 1996. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67:2282–2291.PubMedGoogle Scholar
  37. 37.
    Barrientos, A. and Moraes, C. T. 1999. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274:16188–16197.PubMedGoogle Scholar
  38. 38.
    Beal, M. F. 1995. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38:357–366.PubMedGoogle Scholar
  39. 39.
    Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L., and Davies, K. J. 1990. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265:16330–16336.PubMedGoogle Scholar
  40. 40.
    Schapira, A. H. 1994. Mitochondrial dysfunction in neurodegenerative disorders and aging. Pages 227–244, in Schapira, A. H. and DiMauro, S. (eds.), Mitochondrial Disorders in Neurology, Butterworth-Heinemann, Oxford.Google Scholar
  41. 41.
    Jakel, R. J. and Maragos, W. F. 2000. Neuronal cell death in Huntington's disease: A potential role for dopamine. Trends Neurosci. 23:239–245.PubMedGoogle Scholar
  42. 42.
    Halliwell, B. and Gutteridge, J. M. C. 1999. Antioxydant defence enzymes: The gluthatione peroxidase family. Pages 140–146, in Halliwell, B. and Gutteridge, J. M. C. (eds.), Free Radicals in Biology and Medicine, Oxford University Press, Oxford.Google Scholar
  43. 43.
    Satrustegui, J. and Richter, C. 1984. The role of hydroperoxides as calcium release agents in rat brain mitochondria. Arch. Biochem. Biophys. 233:736–740.PubMedGoogle Scholar
  44. 44.
    Desagher, S., Glowinski, J., and Premont, J. 1996. Astrocytes protect neurons from hydrogen peroxide toxicity. J. Neurosci. 16:2553–2562.PubMedGoogle Scholar
  45. 45.
    Dringen, R., Kussmaul, L., Gutterer, J. M., Hirrlinger, J., and Hamprecht, B. 1999. The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J. Neurochem. 72:2523–2530.PubMedGoogle Scholar
  46. 46.
    Lochen, G., Flohe, L., and Chance, B. 1971. Respiratory chain linked H2O2production in pigeon heart mitochondria. FEBS Lett. 18:261–264.PubMedGoogle Scholar
  47. 47.
    Boveris, A., Oshino, N., and Chance, B. 1972. The cellular production of hydrogen peroxide. Biochem. J. 128:617–630.PubMedGoogle Scholar
  48. 48.
    Boveris, A. and Chance, B. 1973. The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbaric oxygen. Biochem. J. 134:707–716.PubMedGoogle Scholar
  49. 49.
    Perry, T. L., Godin, D. V., and Hansen, S. 1982. Parkinson's disease: A disorder due to nigral glutathione deficiency? Neurosci.Lett. 33:305–310.PubMedGoogle Scholar
  50. 50.
    Perry, T. L. and Yong, V. W. 1986. Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci. Lett. 67:269–274.PubMedGoogle Scholar
  51. 51.
    Jenner, P. 1992. What process causes nigral cell death in Parkinson's disease? Neurol. Clin. 10:387–403.PubMedGoogle Scholar
  52. 52.
    Saggu, H., Cooksey, J., Dexter, D., Wells, F. R., Lees, A., Jenner, P., and Marsden, C. D. 1989. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53:692–697.PubMedGoogle Scholar
  53. 53.
    Damier, P., Hirsch, E. C., Zhang, P., Agid, Y., and Javoy-Agid, F. 1993. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience 52:1–6.PubMedGoogle Scholar
  54. 54.
    Chiueh, C. C., Huang, S. J., and Murphy, D. L. 1992. Enhanced hydroxyl radical generation by 2′-methyl analog of MPTP: Suppression by clorgyline and deprenyl. Synapse 11:346–348.PubMedGoogle Scholar
  55. 55.
    Adams, J. D. Jr., Klaidman, L. K., and Leung, A. C. 1993. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic. Biol. Med. 15:181–186.PubMedGoogle Scholar
  56. 56.
    Ali, S. F., David, S. N., Newport, G. D., Cadet, J. L., and Slikker, W. Jr. 1994. MPTP-induced oxidative stress and neurotoxicity are age-dependent: Evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 18:27–34.PubMedGoogle Scholar
  57. 57.
    Cassarino, D. S., Fall, C. P., Swerdlow, R. H., Smith, T. S., Halvorsen, E. M., Miller, S. W., Parks, J. P., Parker, W. D. Jr., and Bennett, J. P. Jr. 1997. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim. Biophys. Acta 1362:77–86.PubMedGoogle Scholar
  58. 58.
    Thiffault, C., Aumont, N., Quirion, R., and Poirier, J. 1995. Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J. Neurochem. 65:2725–2733.PubMedGoogle Scholar
  59. 59.
    Swerdlow, R. H., Parks, J. K., Miller, S. W., Tuttle, J. B., Trimmer, P. A., Sheehan, J. P., Bennett, J. P. Jr., Davis, R. E., and Parker, W. D. Jr. 1996. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann. Neurol. 40:663–671.PubMedGoogle Scholar
  60. 60.
    Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52:381–389.PubMedGoogle Scholar
  61. 61.
    Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., and Marsden, C. D. 1992. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease: The Royal Kings and Queens Parkinson's Disease Research Group. Ann. Neurol. 32(Suppl):S82–S87.PubMedGoogle Scholar
  62. 62.
    Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E. R., and Mizuno, Y. 1996. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 93:2696–2701.PubMedGoogle Scholar
  63. 63.
    Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. 1977. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180:248–257.PubMedGoogle Scholar
  64. 64.
    Cadenas, E. and Boveris, A. 1980. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem. J. 188:31–37.PubMedGoogle Scholar
  65. 65.
    Turrens, J. F. and Boveris, A. 1980. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427.PubMedGoogle Scholar
  66. 66.
    Votyakova, T. V. and Reynolds, I. J. 2001. DeltaPsi(m)-dependent and-independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79:266–277.PubMedGoogle Scholar
  67. 67.
    Liu, Y., Fiskum, G., and Schubert, D. 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80:780–787.PubMedGoogle Scholar
  68. 68.
    Sipos, I., Tretter, L., and Adam-Vizi, V. 2003. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 84:112–118.PubMedGoogle Scholar
  69. 69.
    Davies, K. J. 1987. Protein damage and degradation by oxygen radicals: I. general aspects. J. Biol. Chem. 262:9895–9901.PubMedGoogle Scholar
  70. 70.
    Halliwell, B. and Gutteridge, J. M. 1984. Free radicals, lipid peroxidation, and cell damage. Lancet 2:1095.Google Scholar
  71. 71.
    Breen, A. P. and Murphy, J. A. 1995. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18:1033–1077.PubMedGoogle Scholar
  72. 72.
    Bates, T. E., Heales, S. J., Davies, S. E., Boakye, P., and Clark, J. B. 1994. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: Evidence for a primary involvement of energy depletion. J. Neurochem. 63:640–648.PubMedGoogle Scholar
  73. 73.
    Bolanos, J. P., Heales, S. J., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64:1965–1972.PubMedGoogle Scholar
  74. 74.
    Brookes, P. S., Land, J. M., Clark, J. B., and Heales, S. J. 1998. Peroxynitrite causes proton leak in brain mitochondria. Biochem. Soc. Trans. 26:S332PubMedGoogle Scholar
  75. 75.
    Bolanos, J. P., Heales, S. J., Peuchen, S., Barker, J. E., Land, J. M., and Clark, J. B. 1996. Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione. Free Radic. Biol. Med. 21:995–1001.PubMedGoogle Scholar
  76. 76.
    Heales, S. J., Bolanos, J. P., Stewart, V. C., Brookes, P. S., Land, J. M., and Clark, J. B. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta 1410:215–228.PubMedGoogle Scholar
  77. 77.
    Friberg, H. and Wieloch, T. 2002. Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250.PubMedGoogle Scholar
  78. 78.
    Chinopoulos, C., Tretter, L., and Adam-Vizi, V. 1999. Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: Inhibition of alpha-ketoglutarate dehydrogenase. J. Neurochem. 73:220–228.PubMedGoogle Scholar
  79. 79.
    Zoccarato, F., Valente, M., and Alexandre, A. 1995. Hydrogen peroxide induces a long-lasting inhibition of the Ca(2+)-dependent glutamate release in cerebrocortical synaptosomes without interfering with cytosolic Ca2+. J. Neurochem. 64:2552–2558.PubMedGoogle Scholar
  80. 80.
    Tretter, L., Chinopoulos, C., and Adam-Vizi, V. 1997. Enhanced depolarization-evoked calcium signal and reduced [ATP]/[ADP] ratio are unrelated events induced by oxidative stress in synaptosomes. J. Neurochem. 69:2529–2537.PubMedGoogle Scholar
  81. 81.
    Hyslop, P. A., Hinshaw, D. B., Halsey, W. A. Jr., Schraufstatter, I. U., Sauerheber, R. D., Spragg, R. G., Jackson, J. H., and Cochrane, C. G. 1988. Mechanisms of oxidant-mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 263:1665–1675.PubMedGoogle Scholar
  82. 82.
    Janero, D. R., Hreniuk, D., and Sharif, H. M. 1993. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): Nonperoxidative purine and pyrimidine nucleotide depletion. J. Cell Physiol. 155:494–504.PubMedGoogle Scholar
  83. 83.
    Tretter, L. and Adam-Vizi, V. 2000. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 20:8972–8979.PubMedGoogle Scholar
  84. 84.
    Gardner, P. R., Raineri, I., Epstein, L. B., and White, C. W. 1995. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270:13399–13405.PubMedGoogle Scholar
  85. 85.
    Patel, M., Day, B. J., Crapo, J. D., Fridovich, I., and McNamara, J. O. 1996. Requirement for superoxide in excitotoxic cell death. Neuron 16:345–355.PubMedGoogle Scholar
  86. 86.
    Hausladen, A. and Fridovich, I. 1996. Measuring nitrix oxide and superoxide: Rate constants for aconitase activity. Methods Enzymol. 269:37–41.PubMedGoogle Scholar
  87. 87.
    Andersson, U., Leighton, B., Young, M. E., Blomstrand, E., and Newsholme, E. A. 1998. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem. Biophys. Res. Commun. 249:512–516.PubMedGoogle Scholar
  88. 88.
    Liang, L. P., Ho, Y. S., and Patel, M. 2000. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570.PubMedGoogle Scholar
  89. 89.
    Li, Q. Y., Pedersen, C., Day, B. J., and Patel, M. 2001. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation. J. Neurochem. 78:746–755.PubMedGoogle Scholar
  90. 90.
    Vasquez-Vivar, J., Kalyanaraman, B., and Kennedy, M. C. 2000. Mitochondrial aconitase is a source of hydroxyl radical: An electron spin resonance investigation. J. Biol. Chem. 275:14064–14069.PubMedGoogle Scholar
  91. 91.
    Humphries, K. M. and Szweda, L. I. 1998. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: Reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841.PubMedGoogle Scholar
  92. 92.
    Park, L. C., Zhang, H., Sheu, K. F., Calingasan, N. Y., Kristal, B. S., Lindsay, J. G., and Gibson, G. E. 1999. Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J. Neurochem. 72:1948–1958.PubMedGoogle Scholar
  93. 93.
    Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. 2000. The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem. Int. 36:97–112.PubMedGoogle Scholar
  94. 94.
    Mizuno, Y., Saitoh, T., and Sone, N. 1987. Inhibition of mitochondrial alpha-ketoglutarate dehydrogenase by 1-methyl-4-phenylpyridinium ion. Biochem. Biophys. Res. Commun. 143:971–976.PubMedGoogle Scholar
  95. 95.
    Chinopoulos, C., Tretter, L., Rozsa, A., and Adam-Vizi, V. 2000. Exacerbated responses to oxidative stress by an Na(+) load in isolated nerve terminals: The role of ATP depletion and rise of [Ca(2+)](i). J. Neurosci. 20:2094–2103.PubMedGoogle Scholar
  96. 96.
    Strijbos, P. J., Leach, M. J., and Garthwaite, J. 1996. Vicious cycle involving Na+ channels, glutamate release, and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation. J. Neurosci. 16:5004–5013.PubMedGoogle Scholar
  97. 97.
    Scanlon, J. M. and Reynolds, I. J. 1998. Effects of oxidants and glutamate receptor activation on mitochondrial membrane potential in rat forebrain neurons. J. Neurochem. 71:2392–2400.PubMedGoogle Scholar
  98. 98.
    Marey-Semper, I., Gelman, M., and Levi-Strauss, M. 1995. A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J. Neurosci. 15:5912–5918.PubMedGoogle Scholar
  99. 99.
    Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537.PubMedGoogle Scholar
  100. 100.
    Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W. 1995. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15:6377–6388.PubMedGoogle Scholar
  101. 101.
    Reynolds, I. J. and Hastings, T. G. 1995. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318–3327.PubMedGoogle Scholar
  102. 102.
    Graham, D. G., Tiffany, S. M., Bell, W. R. Jr., and Gutknecht, W. F. 1978. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14:644–653.PubMedGoogle Scholar
  103. 103.
    Berman, S. B. and Hastings, T. G. 1999. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson's disease. J. Neurochem. 73:1127–1137.PubMedGoogle Scholar
  104. 104.
    Cohen, G., Farooqui, R., and Kesler, N. 1997. Parkinson disease: A new link between monoamine oxidase and mitochondrial electron flow. Proc. Natl. Acad. Sci. USA 94:4890–4894.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Medical BiochemistrySemmelweis UniversityHungary
  2. 2.Neurochemistry GroupHungarian Academy of SciencesBudapestHungary

Personalised recommendations