Neurochemical Research

, Volume 29, Issue 3, pp 493–504 | Cite as

Mitochondrial Dysfunction in Neurodegenerative Diseases Associated with Copper Imbalance

  • Luisa Rossi
  • Marco F. Lombardo
  • Maria R. Ciriolo
  • Giuseppe Rotilio


Copper is an essential transition metal ion for the function of key metabolic enzymes, but its uncontrolled redox reactivity is source of reactive oxygen species. Therefore a network of transporters strictly controls the trafficking of copper in living systems. Deficit, excess, or aberrant coordination of copper are conditions that may be detrimental, especially for neuronal cells, which are particularly sensitive to oxidative stress. Indeed, the genetic disturbances of copper homeostasis, Menkes' and Wilson's diseases, are associated with neurodegeneration. Furthermore, copper interacts with the proteins that are the hallmarks of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, prion diseases, and familial amyotrophic lateral sclerosis. In all cases, copper-mediated oxidative stress is linked to mitochondrial dysfunction, which is a common feature of neurodegeneration. In particular we recently demonstrated that in copper deficiency, mitochondrial function is impaired due to decreased activity of cytochrome c oxidase, leading to production of reactive oxygen species, which in turn triggers mitochondria-mediated apoptotic neurodegeneration.

Copper cuproenzymes mitochondria oxidative stress neurodegeneration apoptosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peña, M. M., Lee, J., and Thiele, D. J. 1999. A delicate balance: Homeostatic control of copper uptake and distribution. J. Nutr. 129:1251–1260.PubMedGoogle Scholar
  2. 2.
    Rotilio, G., Rossi, L., De Martino, A., Da Costa Ferreira, A. M., and Ciriolo, M. R. 1995. Free radicals, metal ions and oxidative stress: Chemical mechanisms of damage and protection in living systems. J. Braz. Chem. Soc. 6:221–227.Google Scholar
  3. 3.
    Shon, E. A. and Manfredi, G. 2003. Neuronal degeneration and mitochondrial dysfunction. J. Clin. Invest. 111:303–312.PubMedGoogle Scholar
  4. 4.
    Rotilio, G., Ciriolo, M. R., Carri, M. T., and Rossi, L. 2002. Disturbances of copper homeostasis and brain function. Pages 277–296, in Massaro, E. J. (ed.), Handbook of Copper Pharmacology and Toxicology, Humana Press, Totowa, NJ.Google Scholar
  5. 5.
    Brewer, G. J. 2003. Copper in medicine. Curr. Opin. Chem. Biol. 7:207–212.PubMedGoogle Scholar
  6. 6.
    Menkes, J. H., Alter, M., Stegleder, G., Weakley, D. R., and Sung, J. H. 1962. A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral and cerebellar degeneration. Pediatrics 29:764–779.PubMedGoogle Scholar
  7. 7.
    Tatton, W. G. and Olanow, C. W. 1999. Apoptosis in neurodegenerative diseases: The role of mitochondria. Biochim. Biophys. Acta. 1410:195–213.PubMedGoogle Scholar
  8. 8.
    Waggoner, D. J., Bartnikas, T. B., and Gitlin, J. D. 1999. The role of copper in neurodegenerative diseases. Neurobiol. Dis. 6:221–230.PubMedGoogle Scholar
  9. 9.
    Harris, E. D. 2000. Cellular copper transport and metabolism. Ann. Rev. Nutr. 20:291–310.Google Scholar
  10. 10.
    Huffman, D. L. and O'Halloran, T. V. 2001. Function, structure, and mechanism of intracellular copper trafficking proteins. Ann. Rev. Biochem. 70:677–701.PubMedGoogle Scholar
  11. 11.
    Lee, J., Prohaska, J. R., and Thiele, D. J. 2001. Essential role for mammalian copper transporter Ctrl in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 98:6842–6847.PubMedGoogle Scholar
  12. 12.
    Klomp, L. W. J., Lin, S.-J., Yuan, D. S., Klausner, R. D., Culotta, V. C., and Gitlin, J. D. 1997. Identification and functional expression of HAHI, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272:9221–9226.PubMedGoogle Scholar
  13. 13.
    Lamb, A. L., Torres, A. S., O'Halloran, T. V., and Rosenzweig, A. C. 2001. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol. 8:751–755.PubMedGoogle Scholar
  14. 14.
    Glerum, M., Shtanko, A., and Tzagoloff, A. 1996. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271:14504–14509.PubMedGoogle Scholar
  15. 15.
    Glerum, D. M., Shtanko, A., and Tzagoloff, A. 1996. SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in S. cerevisiae. J. Biol. Chem. 271:20531–20535.PubMedGoogle Scholar
  16. 16.
    Hiser, L., Di Valentin, M., Hamer, A. G., and Hosler, J. P. 2000. Cox11p is required for stable formation of the Cu (B) and magnesium centers of cytochrome c oxidase. J. Biol. Chem. 275:619–623.PubMedGoogle Scholar
  17. 17.
    Rossi, L., Lippe, G., Marchese, E., De Martino, A., Mavelli, I., Rotilio, G., and Ciriolo, M. R. 1998. Decrease of cytochrome c oxidase protein in heart mitochondria of copper-deficient rats. Biometals 11:207–212.PubMedGoogle Scholar
  18. 18.
    Lutzenko, S. and Cooper, M. J. 1998. Localization of the Wilson's disease protein product to the mitochondria. Proc. Natl. Acad. Sci. USA 95:6004–6009.PubMedGoogle Scholar
  19. 19.
    Richter, C. and Schweizer, M. 1997. Oxidative stress in mitochondria. Pages 169–199, in Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press.Google Scholar
  20. 20.
    Okado-Matzumoto, A. and Fridovich, I. 2001. Subcellular distribution of superoxide dimutases in rat liver: Cu, Zn SOD in mitochondria. J. Biol. Chem. 276:38338–38393.Google Scholar
  21. 21.
    Sturz, L. A., Diekert, C., Jensen, L. T., Lill, R., and Culotta, V. C. 2001. A fraction of yeast Cu, Zn superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. J. Biol. Chem. 276:38084–38089.PubMedGoogle Scholar
  22. 22.
    Shull, S., Heintz, N. H., Periasamy, M., Manohar, M., Janssen, Y. M. W., Marsh, J. P., and Mossman, B. T. 1991. Differential regulation of antioxidant enzymes in response to oxidants. J. Biol. Chem. 266:24938–24403.Google Scholar
  23. 23.
    Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A. S., Zastawny, T. H., Dizdaroglu, M., Goodman, S. I., Huang, T., Miziorko, H., Epstein, C. J., and Wallace, D. G. 1999. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96:846–851.PubMedGoogle Scholar
  24. 24.
    Field, L. S., Furukawa, Y., O'Halloran, T. V., and Culotta, V. C. 2003. Factors controlling the utake of yeast Cu/Zn superoxide dismutase into mitochondria. J. Biol. Chem. (in press).Google Scholar
  25. 25.
    Griffith, O. W. and Meister, A. 1985. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. USA 82:4668–4672.PubMedGoogle Scholar
  26. 26.
    Panfili, E., Sandri, G., and Ernster, L. 1991. Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS Lett. 290:35–37.PubMedGoogle Scholar
  27. 27.
    Nijhawan, D., Honarpour, N., and Wang, X. 2000. Apoptosis in neural development and disease. Ann. Rev. Neurosci. 23:73–87.PubMedGoogle Scholar
  28. 28.
    Strasser, A., O'Connor, L., and Dixit, V. M. 2000. Apoptosis signalling. Ann. Rev. Biochem. 69:217–245.PubMedGoogle Scholar
  29. 29.
    Kroemer, G. and Reed, J. C. 2000. Mitochondrial control of cell death. Nature Med. 6:513–519.PubMedGoogle Scholar
  30. 30.
    van Gurp, M., Festjens, N., van Loo, G., Saelens, X., and Vandenabeele, P. 2003. Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304:487–497.PubMedGoogle Scholar
  31. 31.
    Troy, C. M. and Salvesen, G. S. 2002. Caspases on the brain. J. Neurosci. Res. 69:145–150.PubMedGoogle Scholar
  32. 32.
    Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T.-I., Jones, D. P., and Wang X. 1997. Prevention of apoptosis by Bcl-2: Release of cytochrome from mitochondria blocked. Science 275:1129–1132.PubMedGoogle Scholar
  33. 33.
    Sadoul, R. 1998. Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Differ. 5:805–815.PubMedGoogle Scholar
  34. 34.
    Michaedilis, T. M., Sendtner, M., Cooper, J. D., Airaksinen, M. S., Holtmann, B., Meyer, M., and Thoenen, H. 1996. Inactivation of Bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17:75–89.PubMedGoogle Scholar
  35. 35.
    Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T., and Bredesen, D. E. 1993. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262:1274–1277.PubMedGoogle Scholar
  36. 36.
    Yoshimura, N. and Kudo, H. 1983. Mitochondrial abnormalities in Menkes' kinky hair disease (MKHD): Electron-microscopic study from the brain of an autopsy case. Acta Neuropathol. (Berl.) 59:295–303.Google Scholar
  37. 37.
    Pedespan, J. M., Jouaville, L. S., Cances, C., Letellier, T., Malgat, M., Guiraud, P., Coquet, M., Vernhet, I., Lacombe, D., and Mazat, J. P. 1999. Menkes' disease: Study on the mitochondrial respiratory chain in three cases. Eur. J. Paediatr. Neurol. 3:167–170.PubMedGoogle Scholar
  38. 38.
    Rossi, L., De Martino, A., Marchese, E., Piccirilli, S., Rotilio, G., and Ciriolo, M. R. 2001. Neurodegeneration in the animal model of Menkes' disease involves Bcl-2 linked apoptosis. Neuroscience 103:181–188.PubMedGoogle Scholar
  39. 39.
    Yajima, K. and Suzuki, K. 1979. Neuronal degeneration in the brain of the brindled mouse. Acta Neuropathol. 45:17–25.PubMedGoogle Scholar
  40. 40.
    Yamano, T., Shimada, M., Onaga, A., Kawasaki, H., Iwane, S., Ono, K., and Nishimura, M. 1988. Electron microscopic study on brain of the macular mutant mouse after copper therapy. Acta Neuropathol. (Berl.) 76:574–580.Google Scholar
  41. 41.
    Prohaska, J. R. and Wells, W. W. 1975. Copper deficiency in the developing rat brain: Evidence for abnormal mitochondria. J. Neurochem. 25:221–228.PubMedGoogle Scholar
  42. 42.
    Ohno, M., Narita, T., Abe, J., Tsuzuki, T., Yagi, K., Takikita, S., Takano, T., and Shimada, M. 2002. Apoptosis in cerebrum of macular mutant mouse. Acta Neuropathol. (Berl.) 103:356–362.Google Scholar
  43. 43.
    Fuji, T., Ito, M., Tsuda, H., and Mikawa, H. 1990. Biochemical study on the critical period for treatment of the Mottled Brindled mouse. J. Neurochem. 55:885–889.PubMedGoogle Scholar
  44. 44.
    Lombardo, M. F., Ciriolo, M. R., Rotilio, G., and Rossi, L. 2003. Prolonged copper depletion induces expression of antioxidants and triggers apoptosis in SH-SY5Y neuroblastoma cells. Cell Mol. Life Sci. (in press).Google Scholar
  45. 45.
    Rossi, L., Marchese, E., Lombardo, M. F., Rotilio, G., and Ciriolo, M. R. 2001. Increased susceptibility of copper-deficient neuroblastoma cells to oxidative stress-mediated apoptosis. Free Rad. Biol. Med. 30:1177–1187.PubMedGoogle Scholar
  46. 46.
    Shibata, N., Hirano, A., Kobayashi, M., Umahara, T., Kawanami, T., and Asayama, K. 1995. Cerebellar superoxide dismutase expression in Menkes' kinky hair disease: An immunohistochemical investigation. Acta Neuropathol. (Berl.) 90:198–202.Google Scholar
  47. 47.
    Lai, C. C., Huang, W., Klevay, L. M., Gunning, W. T., and Chiu, T. H. 1996. Antioxidant enzyme gene transcription in copper-deficient rat liver. Free Rad. Biol. Med. 21:233–240.PubMedGoogle Scholar
  48. 48.
    Sokol, R. J., Twedt, D., McKim, J. M. Jr., Devereaux, M. W., Karrer, F. M., Kam, I., von Steigman, G., Narkewicz, M. R., Bacon, B. R., Britton, R. S., et al. 1994. Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis. Gastroenterology 107:1788–1798.PubMedGoogle Scholar
  49. 49.
    Stenlieb, I. 1968. Mitochondrial and fatty acid changes in hepatocytes of patients with Wilson's disease. Gastroenterology 55:354–367.PubMedGoogle Scholar
  50. 50.
    Stenlieb, I., Quintans, M., Volemberg, I., and Schilsky, M. L. 1995. An array of mitochondrial alterations in the hepatocytes of Long-Evans Cinnamon rats. Hepathology 22:1782–1787.Google Scholar
  51. 51.
    Gu, M., Cooper, J. M., Butler, P., Walker, A. P., Mistry, P. K., Dooley, J. S., and Shapira, A. H. V. 2000. Oxidative-phosphorylation defects in liver of patients with Wilson's disease. Lancet 356:469–474.PubMedGoogle Scholar
  52. 52.
    Sheline, C. T., Choi, E. H., Kim-Han, J. S., Dugan, L. L., and Choi, D. W. 2002. Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann. Neurol. 52:195–204.PubMedGoogle Scholar
  53. 53.
    Prusiner, S. B. 1998. Prions. Proc. Natl. Acad. Sci. USA 95:13363–13383.PubMedGoogle Scholar
  54. 54.
    Morrison, B. M. and Morrison, J. H. 1999. Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: A putative mechanism of degeneration. Brain Res. Rev. 29:121–135.PubMedGoogle Scholar
  55. 55.
    Valentine, J. S. and Hart, P. J. 2003. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 100:3617–3622.PubMedGoogle Scholar
  56. 56.
    Stockel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B. 1998. Prion protein selectively binds copper (II) ions. Biochemistry 37:7185–7193.PubMedGoogle Scholar
  57. 57.
    Barnham, K. J., McKinstry, W. J., Multhaup, G., Galatis, D., Morton, C. J., Curtain, C. C., Williamson, N. A., White, A. R., Hinds, M. G., Norton, R. S., Beyreuther, K. Masters, C. L., Parker, M. W., and Cappai, R. 2003. Structure of the Alzheimer's disease amyloid precursor protein copper-binding domain. J. Biol. Chem. 19:17401–17407.Google Scholar
  58. 58.
    Brown, D. R. 2001. Prion and prejudice: Normal protein and the synapse. Trends Neurosci. 24:85–90.PubMedGoogle Scholar
  59. 59.
    White, A. R., Reyes, R., Mercer, J. F., Camakaris, J., Zheng, H., Bush, A. I., Multhaup, G., Beyreuther, K., Masters, C. L., and Cappai, R. 1999. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res. 842:439–444.PubMedGoogle Scholar
  60. 60.
    Maynard, C. J., Cappai, R., Volitakis, I., Cherny, R. A., White, A. R., Beyreuther, K., Masters, C. L., Bush, A. I., and Li, Q. X. 2002. Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277:44670–44676.PubMedGoogle Scholar
  61. 61.
    Huang, X., Cuajungco, M. P., Atwood, C. S., Hartshorn, M. A., Tyndall, J. D. A., Hanson, G. R., Stokes, K. C., Leopold, M., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Saunders, A. J., Lim, J., Moir, R. D., Glabe, C., Bowden, E. F., Masters, C. L., Fairlie, D. P., Tanzi, R. E., and Bush, A. I. 1999. Cu (II) potentiation of Alzheimer Aβ neurotoxicity. J. Biol. Chem. 274:37111–37116.PubMedGoogle Scholar
  62. 62.
    Hesse, L., Beher, D., Masters, C. L., and Multhaup, G. 1994. The beta A4 amyloid precursor protein binding to copper. FEBS Lett. 349:109–116.PubMedGoogle Scholar
  63. 63.
    Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R. 1998. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158:47–52.PubMedGoogle Scholar
  64. 64.
    Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y-S., Huang, X., Goldstein, L. E., Moir, R. D., Lim, J. T., Beyreuther, K., Zheng, H., Tanzi, R. E., Masters, C. L., and Bush, A. I. 2001. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665–676.PubMedGoogle Scholar
  65. 65.
    Squitti, R., Rossini, P. M., Cassetta, E., Moffa, F., Pasqualetti, P., Cortesi, M., Colloca, A., Rossi, L., and Finazzi Agrò, A. 2002. D-Penicillamine reduces serum oxidative stress in Alzheimer's disease patients. Eur. J. Clin. Invest. 32:51–59.PubMedGoogle Scholar
  66. 66.
    Rossi, L., Squitti, R., Pasqualetti, P., Marchese, E., Cassetta, E., Forestiere, E., Rotilio, G., Rossini, P. M., and Finazzi Agrò, A. 2002. Red blood cell copper, zinc superoxide dismutase activity is higher in Alzheimer's disease and is decreased by D-penicillamine. Neurosci. Lett. 329:137–140.PubMedGoogle Scholar
  67. 67.
    Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. 1999. Copper binding to the prion protein: Structural implications of four identical cooperative bindings sites. Proc. Natl. Acad. Sci. USA 96:2042–2047.PubMedGoogle Scholar
  68. 68.
    Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S. J., and Jones, I. M. 2000. Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344(Pt 1):1–5.Google Scholar
  69. 69.
    Pauly, P. C. and Harris, D. A. 1998. Copper stimulates endocy-tosis of the prion protein. J. Biol. Chem. 273:33107–33110.PubMedGoogle Scholar
  70. 70.
    Brown, D. R., Schmidt, B., and Kretzschmar, H. A. 1998. Effects of copper on survival of prion protein knockout neurons and glia. J. Neurochem. 70:1686–1693.PubMedGoogle Scholar
  71. 71.
    Miele, G., Jeffrey, M., Turnbull, D., Manson, J., and Clinton, M. 2002. Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem. Biophys. Res. Commun. 291:372–377.PubMedGoogle Scholar
  72. 72.
    Qin, K., Yang, Y., Chishti, M. A., Meng, L. J., Kretzschmar, H. A., Yip, C. M., Fraser, P. E., and Westway, D. 2000. Copper (II)-induced conformational changes and protease resistance in recombinant and cellular PrP: Effect of protein age and deamidation. J. Biol. Chem. 275:19121–19131.PubMedGoogle Scholar
  73. 73.
    Rachidi, W., Mange, A., Senator, A., Guiraud, P., Riondel, J., Benboubetra, M., Favier, A., and Lehmann, S. 2003. Prion infection impairs copper binding of cultured cells. J. Biol. Chem. 278:14595–14598.PubMedGoogle Scholar
  74. 74.
    Itoh, K., Weis, S., Mehraein, P., and Muller-Hocker, J. 1997. Defects of cytochrome c oxidase in the substantia nigra of Parkinson's disease: An immunohistochemical and morphometric study. Mov. Disord. 12:9–16.PubMedGoogle Scholar
  75. 75.
    Uversky, V. N., Li, J., and Fink, A. L. 2001. Metal-triggered structural transformations, aggregation, and fibrillation of human ά-synuclein. J. Biol. Chem. 276:44284–44296.PubMedGoogle Scholar
  76. 76.
    Deng, H. X., Hentati, A., Tainer, J. A., Iqbal, Z., et al. 1993. Amyotrophic lateral sclerosis and structure defects in Cu,Zn superoxide dismutase. Science 261:1047–1051.PubMedGoogle Scholar
  77. 77.
    Rosen, D. R. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familiar amyotrophic lateral sclerosis. Nature 362:59–62.PubMedGoogle Scholar
  78. 78.
    Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. B., Roe, J. A., Lee, M. K., Valentine, J. S., and Bredesen, D. E. 1996 Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515–518.PubMedGoogle Scholar
  79. 79.
    Estevez, A. G., Crow, J. P., Sampson, J. B., Reiter, C., Zhuang, J., Richardson, G. J., Tarpey, M. M., Barbeito, L., and Beckman, J. S. 1999. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500.PubMedGoogle Scholar
  80. 80.
    Rakhit, R., Cunningham, P., Furtos-Matei, A., Dahan, S., Qi, X., Crow, J. P., Cashman, N. R., Kondejewski, L. H., and Chakrabartty, A. 2002. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implication for amyotrophic lateral sclerosis. J. Biol. Chem. 277:47551–47556.PubMedGoogle Scholar
  81. 81.
    Carri, M. T., Battistoni, A., Polizio, F., Desideri, A., and Rotilio, G. 1994. Impaired copper binding by the H46R mutant of human Cu,Zn superoxide dismutase, involved in amyotrophic lateral sclerosis. FEBS Lett. 356:314–316.PubMedGoogle Scholar
  82. 82.
    Rotilio, G., Carrì, M. T., Rossi, L., and Ciriolo, M. R. 2000. Copper-dependent oxidative stress and neurodegeneration. IUBMB Life 50:309–314.PubMedGoogle Scholar
  83. 83.
    Ciriolo, M. R., De Martino, A., Lafavia, E., Rossi, L., Carri, M. T., and Rotilio, G. 2000. Cu,Zn superoxide dismutase-dependent apoptosis induced by nitric oxide in neuronal cells. J. Biol. Chem. 275:5065–5072.PubMedGoogle Scholar
  84. 84.
    Gabbianelli, R., Ferri, A., Rotilio, G., and Carrì, M. T. 1999. Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J. Neurochem. 73:1175–1180.PubMedGoogle Scholar
  85. 85.
    Elkon, H., Don, J., Melamed, E., Ziv, I., Shirvan, A., and Offen, D. 2002. Mutant and wild-type alpha-synuclein interact with mitochondrial cytochrome c oxidase. J. Mol. Neurosci. 18:229–238.PubMedGoogle Scholar
  86. 86.
    Casley, C. S., Canevari, L., Land, J. M., Clark, J. B., and Sharpe, M. A. 2002. β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80:91–100.PubMedGoogle Scholar
  87. 87.
    Sorbi, S., Bird, E. D., and Blass, J. P. 1983. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol. 13:72–78.PubMedGoogle Scholar
  88. 88.
    Mastrogiacomo, F., Lindsay, J. G., Bettendorff, L., Rice, J., and Kish, S. J. 1996. Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer's disease. Ann. Neurol. 39:592–598.PubMedGoogle Scholar
  89. 89.
    Bonilla, E., Tanji, K., Hirano, M., Vu, T. H., Di Mauro, S., and Schon, E. A. 1999. Mitochondrial involvement in Alzheimer's disease. Biochem. Biophys. Acta 1410:171–182.PubMedGoogle Scholar
  90. 90.
    Dal Canto, M. C. and Gurney, M. E. 1994. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145:1271–1279.PubMedGoogle Scholar
  91. 91.
    Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., Sisodia, S. S., Cleveland, D. W., and Price, D. L. 1995. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116.PubMedGoogle Scholar
  92. 92.
    Carrì, M. T., Ferri, A., Battistoni, A., Famhy, L., Gabbianelli, R., Poccia, F., and Rotilio, G. 1997. Expression of a Cu,Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 414:365–368.PubMedGoogle Scholar
  93. 93.
    Mattiazzi, M., D'Aurelio, M., Gajewski, C. D., Martushova, K., Kiaei, M., Beal, M. F., and Manfredi, G. 2002. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277:29626–9633.PubMedGoogle Scholar
  94. 94.
    Okado-Matsumoto, A. and Fridovich, I. 2002. Amyotrophic lateral sclerosis: A proposed mechanism. Proc. Natl. Acad. Sci. USA 99:9010–9014.PubMedGoogle Scholar
  95. 95.
    Choi, S. I., Ju, W. K., Choi, E. K., Kim, J., Lea, H. Z., Carp, R. I., Wisniewski, H. M., and Kim, Y. S. 1998. Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol. (Berl.) 96:279–286.Google Scholar
  96. 96.
    O'Donovan, C. N., Tobin, D., and Cotter, T. G. 2001. Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem. 276:516–523.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Luisa Rossi
    • 1
  • Marco F. Lombardo
    • 1
  • Maria R. Ciriolo
    • 1
  • Giuseppe Rotilio
    • 1
  1. 1.Department of Biology, “Tor Vergata”University of RomeRomeItaly

Personalised recommendations