Neurochemical Research

, Volume 29, Issue 2, pp 357–369 | Cite as

Microarray Analysis of Mouse Brain Gene Expression Following Acute Ethanol Treatment



Alterations in gene expression are thought to help mediate certain effects of alcohol in the brain. We have analyzed the expression of approximately 24,000 genes using oligonucleotide microarrays to examine the brain expression profiles in two strains of inbred mice, C57BL/6J and DBA/2J, following exposure to an acute dose of ethanol. Our screen identified 61 genes responding to the ethanol treatment beyond a 1.5-fold threshold, with 46 genes altered in both mouse strains and 15 altered in only one strain. Approximately 25% of the genes were selected for confirmation by reverse transcriptase polymerase chain reaction with an 87% success rate. The genes identified have roles in cell signaling, gene regulation, and homeostasis/stress response. Although some of the genes were previously known to be ethanol responsive, we have for the most part identified novel genes involved in the acute murine brain response to ethanol. Such genes have the potential to represent candidate genes in the search to elucidate the molecular pathways mediating ethanol's effects in the brain.

Ethanol brain mouse gene expression microarray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crabbe, J. C., Phillips, T. J., Buck, K. J., Cunningham, C. L., and Belknap, J. K. 1999. Identifying genes for alcohol and drug sensitivity: Recent progress and future directions. Trends Neurosci. 22:173–179.Google Scholar
  2. 2.
    Li, T. K. 2000. Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J. Stud. Alcohol 61:5–12.Google Scholar
  3. 3.
    Buck, K. J. and Finn, D. A. 2001. Genetic factors in addiction: QTL mapping and candidate gene studies implicate GABAergic genes in alcohol and barbiturate withdrawal in mice. Addiction 96:139–149.Google Scholar
  4. 4.
    Prescott, C. A. and Kendler, K. S. 1999. Genetics and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am. J. Psychiatry 156:34–40.Google Scholar
  5. 5.
    Schuckit, M. A. 1994. A clinical model of genetic influences in alcohol dependence. J. Stud. Alcohol 55:5–17.Google Scholar
  6. 6.
    Fan, L., van der Brug, M., Chen, W.-B., Dodd, P. R., Matsumoto, I., Niwa, S., and Wilce, P. A. 1999. Increased expression of a mitochondrial gene in human alcoholic brain revealed by differential display. Alcohol. Clin. Exp. Res. 23:408–415.Google Scholar
  7. 7.
    Lewohl, J. M., Wang, L., Miles, M. F., Zhang, L., Dodd, P. R., and Harris, R. A. 2000. Gene expression in human alcoholism: Microarray analysis of frontal cortex. Alcohol. Clin. Exp. Res. 24:1873–1882.Google Scholar
  8. 8.
    Mayfield, R. D., Lewohl, J. M., Dodd, P. R., Herlihy, A., Liu, J., and Harris, R. A. 2002. Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J. Neurochem. 81:802–813.Google Scholar
  9. 9.
    Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., Dong, H., Hodge, C. W., Lockhart, D. J., and Miles, M. F. 2000. Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol. Pharmacol. 52:1593–1600.Google Scholar
  10. 10.
    Rimondini, R., Arlinde, C., Sommer, W., and Heilig, M. 2002. Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J. 16:27–35.Google Scholar
  11. 11.
    Saito, M., Smiley, J., Toth, R., and Vadasz, C. 2002. Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem. Res. 27:1221–1229.Google Scholar
  12. 12.
    Schuckit, M. A. and Smith, T. L. 1996. An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch. Gen. Psychiatry 53:202–210.Google Scholar
  13. 13.
    Crawley, J. N., Belknap, J. K., Collins, A., Crabbe, J. C., Frankel, W., Henderson, N., Hitzemann, R. J., Maxson, S. C., Miner, L. L., Silva, A. J., Wehner, J. M., Wynshaw-Boris, A., and Paylor, R. 1997. Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology (Berl.) 132:107–124.Google Scholar
  14. 14.
    Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162:156–159.Google Scholar
  15. 15.
    Li, Y. and Sarkar, F. 2002. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 186:157–165.Google Scholar
  16. 16.
    Welling, D. B., Lasak, J. M., Akhmametyeva, E., Ghaheri, B., and Chang, L. S. 2002. cDNA microarray analysis of vestibular schwannomas. Otol. Neurotol. 23:736–748.Google Scholar
  17. 17.
    Rahman, S. and Miles, M. F. 2001. Identification of novel ethanol-sensitive genes by expression profiling. Pharmacol. Ther. 92:123–134.Google Scholar
  18. 18.
    Wurmbach, E., Gonzalez-Maeso, J., Yuen, T., Ebersole, B. J., Mastaitis, J. W., Mobbs, C. V., and Sealfon, S. C. 2002. Validated genomic approach to study differentially expressed genes in complex tissues. Neurochem. Res. 27:1027–1033.Google Scholar
  19. 19.
    Daniels, G. M. and Buck, K. J. 2002. Expression profiling identifies strain-specific changes associated with ethanol withdrawal in mice. Genes Brain Behav. 1:35–45.Google Scholar
  20. 20.
    Bakay, M., Chen, Y.-W., Borup, R., Zhao, P., Nagaraju, K., and Hoffman, E. P. 2002. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 3:4.Google Scholar
  21. 21.
    Yuen, T., Wurmbach, E., Pfeffer, R. L., Ebersole, B. J., and Sealfon, S. C. 2002. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30:e48.Google Scholar
  22. 22.
    Lu, S. C., Alvarez, L., Huang, Z.-Z., Chen, L., An, W., Corrales, F. J., Avila, M. A., Kanel, G., and Mato, J. M. 2001. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. USA 98:5560–5565.Google Scholar
  23. 23.
    Zhao, X., Lein, E. S., He, A., Smith, S. C., Aston, C., and Gage, F. H. 2001. Transcriptional profiling reveals strict boundaries between hippocampal subregions. J. Comp. Neurol. 441:187–196.Google Scholar
  24. 24.
    Matejuk, A., Dwyer, J., Zamora, A., Vandenbark, A. A., and Offner, H. 2002. Evaluation of the effects of 17β-estradiol (17β-E2) on gene expression in experimental autoimmune encephalomyelitis using DNA microarray. Endocrinology 143:313–319.Google Scholar
  25. 25.
    Sokolov, B. P., Polesskaya, O. O., and Uhl, G. R. 2003. Mouse brain gene expression changes after acute and chronic amphetamine. J. Neurochem. 84:244–252.Google Scholar
  26. 26.
    Xu, Y., Ehringer, M., Yang, F., and Sikela, J. M. 2001. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization. Alcohol. Clin. Exp. Res. 25:810–818.Google Scholar
  27. 27.
    Asher, O., Cunningham, T. D., Yao, L., Gordon, A. S., and Diamond, I. 2002. Ethanol stimulates cAMP responsive element-mediated transcription via CREB and cAMP-dependent protein kinase. J. Pharmacol. Exp. Ther. 301:66–70.Google Scholar
  28. 28.
    Harrison, M. and Singh, S. M. 2002. Genetics and differential expression of NADH:ubiquinone oxidoreductase B8 subunit in brains of genetic strains of mice differing in voluntary alcohol consumption (VAC). Biochim. Biophys. Acta 1579:164–172.Google Scholar
  29. 29.
    Murphy, B. C., Chiu, T., Harrison, M., Uddin, R. K., and Singh, S. M. 2002. Examination of ethanol responsive liver and brain specific gene expression, in the mouse strains with variable ethanol preferences, using cDNA expression arrays. Biochem. Genet. 40:395–410.Google Scholar
  30. 30.
    Loney, K., Uddin, K. R., and Singh, S. M. 2003. Strain-specific brain metallothionein (MT-II) gene expression, its ethanol responsiveness, and association with voluntary alcohol consumption (VAC) in mice. Alcohol. Clin. Exp. Res. 27:388–395.Google Scholar
  31. 31.
    Luo, J. and Miller, M. W. 2000. Ethanol enhances erbB-mediated migration of human breast cancer cess in culture. Breast Cancer Res. Treat. 63:61–69.Google Scholar
  32. 32.
    Tomasini, R., Samir, A. A., Vaccaro, M. I., Pebusque, M.-J., Dagorn, J. C., Iovanna, J. L., and Dusetti, N. J. 2001. Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. J. Biol. Chem. 276:44185–44192.Google Scholar
  33. 33.
    Singh, L. D., Singh, S. P., Handa, R. K., Ehmann, S., and Snyder, A. K. 1996. Effects of ethanol on GLUT1 protein and gene expression in rat astrocytes. Metab. Brain Dis. 11:343–357.Google Scholar
  34. 34.
    Montoliu, C., Sanchotello, M., Azorin, I., Burgal, M., Valles, S., Renaupiqueras, J., and Guerri, C. 1995. Ethanol increases cytochrome P450-2E1 and induces oxidative stress in astrocytes. J. Neurochem. 65:2561–2570.Google Scholar
  35. 35.
    Guo, W., Baluda, M. A., and Park, N. H. 1997. Ethanol upregulates the expression of p21 WAF1/CIP1 and prolongs G1 transition via a p53-independent pathway in human epithelial cells. Oncogene 15:1143–1149.Google Scholar
  36. 36.
    Kitamura, Y., Ota, T., Matsuoka, Y., Tooyama, I., Kimura, H., Shimohama, S., Nomura, Y., Gebicke-Haerter, P. J., and Taniguchi, T. 1999. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells. Glia 25:154–164.Google Scholar
  37. 37.
    Furukawa-Hibi, Y., Yoshida-Araki, K., Ohta, T., Ikeda, K., and Motoyama, N. 2002. FOXO forkhead transcription factors induce G<sub>2</sub>-M checkpoint in response to oxidative stress. J. Biol. Chem. 277:26729–26732.Google Scholar
  38. 38.
    Velasco-Miguel, S., Buckbinder, L., Jean, P., Gelbert, L., Talbott, R., Laidlaw, J., Seizinger, B., and Kley, N. 1999. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18:127–137.Google Scholar
  39. 39.
    Yoshida, Y., Matsuda, S., Ikematsu, N., Kawamura-Tsuzuku, J., Inazawa, J., Umemori, H., and Yamamoto, T. 1998. ANA, a novel member of Tob/BTG1 family, is expressed in the ventricular zone of the developing central nervous system. Oncogene 16:2687–2693.Google Scholar
  40. 40.
    Junn, E., Han, S. H., Im, J. Y., Yang, Y., Cho, E. W., Um, H. D., Kim, D. K., Lee, K. W., Han, P. L., Rhee, S. G., and Choi, I. 2000. Vitamin D<sub>3</sub> up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 164:6287–6295.Google Scholar
  41. 41.
    Tomasini, R., Samir, A. A., Pebusque, M.-J., Calvo, E. L., Totaro, S., Dagorn, J. C., Dusetti, N. J., and Iovanna, J. L. 2002. p53-Dependent expression of the stress-induced protein (SIP). Eur. J. Cell Biol. 81:294–301.Google Scholar
  42. 42.
    Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H., and Soares, M. P. 2002. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J. Biol. Chem. 277:17950–17961.Google Scholar
  43. 43.
    Xu, L., Zhan, Y., Wang, Y., Feuerstein, G. Z., and Wang, X. 2002. Recombinant adenoviral expression of dominant negative IϰBα protects the brain from cerebral ischemic injury. Biochem. Biophys. Res. Comm. 299:14–17.Google Scholar
  44. 44.
    Zhou, Z., Sun, X., and Kang, Y. J. 2002. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. (Maywood) 227:214–222.Google Scholar
  45. 45.
    Hidalgo, J., Aschner, M., Zatta, P., and Vasak, M. 2001. Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull. 55:133–145.Google Scholar
  46. 46.
    Imaizumi, K., Tsuda, M., Wanaka, A., Tohyama, M., and Takagi, T. 1994. Differential expression of sgk mRNA, a member of the Ser/Thr protein kinase gene family, in rat brain after CNS injury. Brain Res. Mol. Brain Res. 26:189–196.Google Scholar
  47. 47.
    Liu, D., Yang, X., and Songyang, Z. 2000. Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr. Biol. 10:1233–1236.Google Scholar
  48. 48.
    Mikosz, C. A., Brickley, D. R., Sharkey, M. S., Moran, T. W., and Conzen, S. D. 2001. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J. Biol. Chem. 276:16649–16654.Google Scholar
  49. 49.
    Shoshani, T., Faerman, A., Mett, I., Zelin, E., Tenne, T., Gorodin, S., Moshel, Y., Elbaz, S., Budanov, A., Chaju, A., Kalinski, H., Kamer, I., Rozen, A., Mor, O., Keshet, E., Leshkowitz, D., Einat, P., Skaliter, R., and Feinstein, E. 2002. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell Biol. 22:2283–2293.Google Scholar
  50. 50.
    Nichols, C. D. and Sanders-Bush, E. 2002. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 26:634–642.Google Scholar
  51. 51.
    Giacomelli, S., Palmery, M., Romanelli, L., Cheng, C. Y., and Silvestrini, B. 1998. Lysergic acid diethylamide (LSD) is a partial agonist of D<sub>2</sub> dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro. Life Sci. 63:215–222.Google Scholar
  52. 52.
    Arvanov, V. L., Liang, X., Russo, A., and Wang, R. Y. 1999. LSD and DOB: Interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex. Eur. J. Neurosci. 9:3064–3072.Google Scholar
  53. 53.
    Cannella, B., Pitt, D., Marchionni, M., and Raine, C. S. 1999. Neuregulin and erbB receptor expression in normal and diseased human white matter. J. Neuroimmunol. 100:233–242.Google Scholar
  54. 54.
    Fu, H., Qi, Y., Tan, M., Cai, J., Takebayashi, H., Nakafuku, M., Richardson, W., and Qiu, M. 2002. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693.Google Scholar
  55. 55.
    Kril, J. J., Halliday, G. M., Svoboda, M. D., and Cartwright, H. 1997. The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79:983–998.Google Scholar
  56. 56.
    Lampl, C. and Yazdi, K. 2002. Central pontine myelinolysis. Eur. Neurol. 47:3–10.Google Scholar
  57. 57.
    Grunwald, F., Schrock, H., Biersack, H. J., and Kuschinsky, W. 1993. Changes in local cerebral glucose utilization in the awake rat during acute and chronic administration of ethanol. J. Nucl. Med. 34:793–798.Google Scholar
  58. 58.
    Williams-Hemby, L., Grant, K. A., Gatto, G. J., and Porrino, L. J. 1996. Metabolic mapping of the effects of chronic voluntary ethanol consumption in rats. Pharmacol. Biochem. Behav. 54:415–423.Google Scholar
  59. 59.
    Smith, D. G., Learn, J. E., McBride, W. J., Lumeng, L., Li, T. K., and Murphy, J. M. 2001. Long-term effects of alcohol drinking on cerebral glucose utilization in alcohol-preferring rats. Pharmacol. Biochem. Behav. 69:543–553.Google Scholar
  60. 60.
    Handa, R. K., DeJoseph, M. R., Singh, L. D., Hawkins, R. A., and Singh, S. P. 2000. Glucose transporters and glucose utilization in rat brain after acute ethanol administration. Metab. Brain Dis. 15:211–222.Google Scholar
  61. 61.
    Tomás, M., Fornas, E., Megías, L., Durán, J.-M., Portolés, M., Guerri, C., Egea, G., and Renau-Piqueras, J. 2002. Ethanol impairs monosaccharide uptake and glycosylation in cultured rat astrocytes. J. Neurochem. 83:601–612.Google Scholar
  62. 62.
    Hu, I. C., Singh, S. P., and Snyder, A. K. 1995. Effects of ethanol on glucose transporter expression in cultured hippocampal neurons. Alcohol. Clin. Exp. Res. 19:1398–1402.Google Scholar
  63. 63.
    Poirier, L. A., Rachdaoui, N., and Nagy, L. E. 2001. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: regulation of heterotrimeric G-proteins. Biochem. J. 354:323–330.Google Scholar
  64. 64.
    El Messari, S., Ait-Ikhlef, A., Ambrose, D. H., Penicaud, L., and Arluison, M. 2002. Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: An in situ hybridization study. J. Chem. Neuroanat. 24:225–242.Google Scholar
  65. 65.
    Gray, S., Feinberg, M. W., Hull, S., Kuo, C. T., Watanabe, M., Sen-Banerjee, S., DePina, A., Haspel, R., and Jain, M. K. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 277:34322–34328.Google Scholar
  66. 66.
    Rowles, J., Scherer, S. W., Xi, T., Majer, M., Nickle, D. C., Rommens, J. M., Popov, K. M., Harris, R. A., Riebow, N. L., Xia, J., Tsui, L. C., Bogardus, C., and Prochazka, M. 1996. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J. Biol. Chem. 271:22376–22382.Google Scholar
  67. 67.
    Markel, P., Bennett, B., Beeson, M., Gordon, L., and Johnson, T. 1997. Confirmation of quantitative trait loci for ethanol sensitivity in long-sleep and short-sleep mice. Genome Res. 7:92–99.Google Scholar
  68. 68.
    Buck, K. J., Metten, P., Belknap, J. K., and Crabbe, J. C. 1997. Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J. Neurosci. 17:3946–3955.Google Scholar
  69. 69.
    Tarantino, L. M., McLearn, G. E., Rodriguez, L. A., and Plomin, R. 1998. Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol. Clin. Exp. Res. 22:1099–1105.Google Scholar
  70. 70.
    Belknap, J. K., Crabbe, J. C., and Young, E. R. 1993. Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berl.) 112:503–510.Google Scholar
  71. 71.
    Belknap, J. K., Metten, P., Helms, M. L, O'Toole, L. A., Angeli-Gade, S., Crabbe, J. C., and Phillips, T. J. 1993. Quantitative trait loci (QTL) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol in BXD mice. Behav. Genet. 23:213–222.Google Scholar
  72. 72.
    Browman, D. E. and Crabbe, J. C. 2000. Quantitative trait loci affecting ethanol sensitivity in BXD recombinant inbred mice. Alcohol. Clin. Exp. Res. 24:17–23.Google Scholar
  73. 73.
    Shelton, K. L. and Grant, K. A. 2002. Discriminative stimulus effects of ethanol in C57BL/6J and DBA/2J inbred mice. Alcohol. Clin. Exp. Res. 26:747–757.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Biology and Division of Medical GeneticsUniversity of Western OntarioLondonCanada

Personalised recommendations