Neurochemical Research

, Volume 29, Issue 1, pp 189–197 | Cite as

Taurine as a Modulator of Excitatory and Inhibitory Neurotransmission



We present data that summarize our findings on the role of taurine in the central nervous system and in particular taurine's interaction with the inhibitory and excitatory systems. In taurine-fed mice, the expression level of glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, is elevated. Increased expression of GAD was accompanied by increased levels of GABA. We also found in vitro, that taurine regulates neuronal calcium homeostasis and calcium-dependent processes, such as protein kinase C (PKC) activity. This calcium-dependent kinase was regulated by taurine, whereas the activity of protein kinase A (PKA), a cAMP-dependent, calcium-independent kinase, was not affected. Furthermore, as a consequence of calcium regulation, taurine counteracted glutamate-induced mitochondrial damage and cell death.


Calcium Cell Death Nervous System Central Nervous System Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watkins, J. C. and Evans, R. H. 1981. Excitatory amino acid transmitter. Ann. Rev. Pharmacol. Toxicol. 21:165–204.Google Scholar
  2. 2.
    Jaffe, D. B. and Brown, T. H. 1994. Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J. Neurophysiol. 72:471–474.Google Scholar
  3. 3.
    Kater, S. B., Mattson, M. P., Cohan, C., and Connor, J. 1988. Calcium regulation of the neuronal growth cone. TINS 11:315–321.Google Scholar
  4. 4.
    Mattson, M. P. 1994. Calcium and neuronal injury in Alzheimer's disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann. NY Acad. Sci. 15:50–76.Google Scholar
  5. 5.
    Hartley, D. M., Kurth, M. C., Bjerkness, L., Weiss, J. H., and Choi, D. W. 1993. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell cultures corelates with subsequent neuronal degeneration. J. Neurosci. 13:1993–2000.Google Scholar
  6. 6.
    Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276.Google Scholar
  7. 7.
    Mattson, M. P. 1992. Calcium as sculptor and destroyer of neural circuitry. Exp. Gerontol. 27:29–49.Google Scholar
  8. 8.
    Curtis, D. R. and Johnston, G. A. R. 1974. Amino acid transmitter in the mammalian central nervous system. Ergbn. Physiol. 69:97–188.Google Scholar
  9. 9.
    Kelly, J. S. and Krnjevic, K. (1969) The action of glycine on cortical neurons. Exp Brain Res. 9:155–163.Google Scholar
  10. 10.
    Aprison, M. H., Shank, R. P., Davidoff, R. A., and Werman, R. 1968. The distribution of glycine, a neurotransmitter suspect in the central nervous system of several vertebrate species. Life Sci. 7:583–590.Google Scholar
  11. 11.
    Betz, H. 1987. Biology and structure of the mammalian glycine receptor. Trends Neurosci. 10:113–117.Google Scholar
  12. 12.
    Langosch, D., Becker, C.-M., and Betz, H. 1990. The inhibitory glycine receptor: A ligand-gated chloride channel of the central nervous system. Eur. J. Biochem. 194:1–8.Google Scholar
  13. 13.
    Ben-Ari, Y. 2002. Excitatory actions of GABA during development: The nature of the nurture. Nature Neurosci. 3:728–739.Google Scholar
  14. 14.
    Huxtable, R. J. 1992. The physiological actions of taurine. Physiol. Rev. 72:101–163.Google Scholar
  15. 15.
    Sturman, J. A. 1993. Taurine in development. Physiol. Rev. 73:119–147.Google Scholar
  16. 16.
    Huxtable, R. J. 1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32:471–533.Google Scholar
  17. 17.
    Wu, J. Y., Tang, X. W., Schloss, J. V., and Faiman, M. D. 1998. Regulation of taurine biosynthesis and its physiological significance in the brain. Adv. Exp. Med. Biol. 442:339–345.Google Scholar
  18. 18.
    Trenkner, E., El Idrissi, A., and Harris, C. 1996. Balanced interaction of growth factors and taurine regulate energy metabolism, neuronal survival, and function of cultured mouse cerebellar cells under depolarizing conditions. Adv. Exp. Med. Biol. 403:507–517.Google Scholar
  19. 19.
    El Idrissi, A., Harris, C., and Trenkner, E. 1998. Taurine modulates glutamate-and growth factors-mediated signaling mechanisms. Adv. Exp. Med. Biol. 442:385–396.Google Scholar
  20. 20.
    El Idrissi, A., and Trenkner, E. 1999. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J. Neurosci. 19:9459–9468.Google Scholar
  21. 21.
    El Idrissi, A., and Trenkner, E. (2003) Taurine regulates mitochondrial calcium homeostasis. Pages 527–536, in Lombardini, J. B., Schaffer, S. W. and Azuma, J. (eds.), Taurine 5 beginning the 21st century, Adv. Exp. Med. Biol., Vol. 526, New York: Kluwer.Google Scholar
  22. 22.
    Trenkner, E., and Sidman, R. L. 1977. Histogenesis of mouse cerebellum in microwell cultures: Cell reaggregation and migration, fiber and synapse formation. J. Cell Biol. 75:915–940.Google Scholar
  23. 23.
    Trenkner, E. 1991. Culturing nerve cells. Pages 283–307, in Banker, G. and Goslin, K. (eds.), Cerebellar cells in culture, MIT Press.Google Scholar
  24. 24.
    Benke, D., Mertens, S., Trzeciak, A., Gillessen, D., and Mohler, H. 1991. GABAA receptors display association of gamma 2-subunit with alpha 1-and beta 2/3-subunits. J. Biol. Chem. 266:4478–4483.Google Scholar
  25. 25.
    Ye, G. L., Tse, A. C. O., and Yung, W. H. 1997. Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA-and glycine-linked chloride conductance. Brain Res. 749:175–179.Google Scholar
  26. 26.
    Flint, A. C., Liu, X., and Kriegstein, A. R. 1998. Nonsynaptic GlyR activation during early neocortical development. Neuron 20:43–53.Google Scholar
  27. 27.
    Quinn, M. R. and Harris, C. L. 1995. taurine allosterically inhibits binding of [35S]-t-butylbicyclophosphorothionate (TBPS) to rat brain synaptic membranes. Neuropharmacology 34:1607–1613.Google Scholar
  28. 28.
    Kuriyama, K. and Hashimoto, T. 1998. Interrelationship between taurine and GABA. Adv. Exp. Med. Biol. 442:329–337.Google Scholar
  29. 29.
    Frosini, M., Sesti, C., Dragoni, S., Valoti, M., Palmi, M., Dixon, H. B., Machetti, F., and Sgaragli, G. 2003. Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br. J. Pharmacol. 138:1163–1171.Google Scholar
  30. 30.
    Chepkova, A. N., Doreulee, N., Yanovsky, Y., Mukhopadhyah, D., Haas, H. L., and Sergeeva, O. A. 2002. Long-lasting enhancement of corticostriatal neurotransmission by taurine. Eur. J. Neurosci. 16:1523–1530.Google Scholar
  31. 31.
    El Idrissi, A., Messing, J., Scalia, J., and Trenkner, E. 2003. Prevention of epileptic seizures through taurine. Pages 515–525, in: Lombardini, J. B., Schaffer, S. W. and Azuma, J. (eds.), taurine 5 beginning the 21st century, Adv. Exp. Med. Biol., Vol. 526, New York: Kluwer.Google Scholar
  32. 32.
    Militante, J. D. and Lombardini, J. B. 1998. Pharmacological characterization of the effects of taurine on calcium uptake in the rat retina. Amino Acids 15:99–108.Google Scholar
  33. 33.
    Choi, D. W. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann. Rev. Neurosci. 13:171–182.Google Scholar
  34. 34.
    Favaron, M., Manev, H., Siman, R., Bertolino, M., Szekely, A. M., DeErausquin, G., Guidotti, A., and Costa, E. 1990. Down-regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate-induced neuronal death. Proc. Natl. Acad. Sci. USA 87:1983–1987.Google Scholar
  35. 35.
    Eboli, M. L., Mercanti, D., Cioti, M. T., Squinto, A., and Castellani, L. 1994. Glutamate-induced phosphorylation in cerebellar granule cells: Role of protein kinase C. Neurochem. Res. 19:1257–1264.Google Scholar
  36. 36.
    Manev, H., Costa, E., Wroblewski, J. T., and Guidotti, A, 1990. Abusive stimulation of excitatory amino acid receptors: A strategy to limit neurotoxicity. FASEB. J. 4:2789–2797.Google Scholar
  37. 37.
    Isaev, N. K., Zorov, D. B., Stelmashook, E. V., Uzbekov, R. E., Kozhemyakin, M. B., and Victorov, I. V. 1996. Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria. FEBS Lett. 392:143–147.Google Scholar
  38. 38.
    Khodorov, B., Pinelis, V., Vergun, O., Storozhevykh, T., and Vinskaya, N. 1996. Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett. 397:230–234.Google Scholar
  39. 39.
    White, R. J. and Reynolds, I. J. 1996. Mitochondrial depolarization in glutamate stimulated neurons: An early signal specific to excitotoxin exposure. J. Neurosci. 16:5688–5697.Google Scholar
  40. 40.
    Keelan, J., Vergun, O., and Duchen, M. R. 1999. Excitotoxic mitochondrial depolarization requires both calcium and nitric oxide in rat hippocampal neurons. J. Physiol. 520:797–813.Google Scholar
  41. 41.
    Eimerl, S. and Schramm, M. 1994. The quantity of calcium that appears to induce neuronal death. J. Neurochem. 62:1223–1226.Google Scholar
  42. 42.
    Pasantes-Morales, H., Franco, R., Ochoa, L., and Ordaz, B. 2002. Signaling events during swelling and regulatory volume decrease. Neurochem. Res. 25:1301–1314.Google Scholar
  43. 43.
    Holmes, G. L. and Ben-Ari, Y. 1998. Seizures in the developing brain: Perhaps not so benign after all. Neuron 21:1231–1234.Google Scholar
  44. 44.
    Choi, D. W., Koh, J. Y., and Peters, S. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196.Google Scholar
  45. 45.
    Siesjo, B. K. 1988. Historical overview: Calcium, ischemia, and death of brain cells. Ann. NY Acad. Sci. 522:638–631.Google Scholar
  46. 46.
    Beal, M. F., Hyman, B. T., and Koroshetz, W. 1993. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? TINS 6:125–131.Google Scholar
  47. 47.
    Chen, L. and Huang, L.-Y. M. 1992. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521–523.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.New York State Institute for Basic Research in Developmental Disabilities and The Center for Developmental Neuroscience at The City University of New YorkStaten Island

Personalised recommendations