Neurochemical Research

, Volume 29, Issue 1, pp 177–187 | Cite as

Effects of Phospholemman Expression on Swelling-Activated Ion Currents and Volume Regulation in Embryonic Kidney Cells

  • Cristina E. Davis
  • Manoj K. Patel
  • James R. Miller
  • J. Edward JohnIII
  • Larry R. Jones
  • Amy L. Tucker
  • J. Paul Mounsey
  • J. Randall Moorman


Phospholemman (PLM) is a 72-amino-acid phosphoprotein that is a major substrate for cAMP-dependent protein kinase, protein kinase C, and NIMA kinase. In lipid bilayers, PLM forms ion channels selective for Cl, K+, and taurine. Effluxes of these abundant intracellular osmolytes play an important role in the control of dynamic cell volume changes in many cell types. We measured swelling-activated ion currents and regulatory volume decrease (RVD) in human embryonic kidney cells stably overexpressing canine cardiac PLM. In response to swelling, two clonal cell lines overexpressing PLM had increased swelling-activated ion current densities and faster and more extensive RVD. A third clonal cell line overexpressing mutant PLM showed reduced ion current densities and a diminished RVD response. These results suggest a role for PLM in the regulation of cell volume, perhaps as a modulator of an endogenous swelling-activated signal transduction pathway or possibly by participating directly in swelling-induced osmolyte efflux.

Regulatory volume decrease cell swelling phospholemman ion channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pasantes-Morales, H., Murray, R. A., Sanchez-Olea, R., and Moran, J. 1994. Regulatory volume decrease in cultured astrocytes: II. Permeability pathway to amino acids and polyols. Am. J. Physiol. 266:C172–C178.Google Scholar
  2. 2.
    Pasantes-Morales, H., Franco, R., Torres-Marquez, M. E., Hernandez-Fonseca, K., and Ortega, A. 2000. Amino acid osmolytes in regulatory volume decrease and Isovolumetric regulation in brain cells: Contribution and mechanisms. Cell Physiol. Biochem. 10:361–370.Google Scholar
  3. 3.
    Pasantes-Morales, H., Cardin, V., and Tuz, K. 2000. Signaling events during swelling and regulatory volume decrease. Neurochem. Res. 25:1301–1314.Google Scholar
  4. 4.
    Haussinger, D., Lang, F., and Gerok, W. 1994. Regulation of cell function by the cellular hydration state. Am. J. Physiol. 267: E343–355.Google Scholar
  5. 5.
    Burg, M. B. and Garcia-Perez, A. 1992. How tonicity regulates gene expression. J. Am. Soc. Nephrol. 3:121–127.Google Scholar
  6. 6.
    Burg, M. B. 1995. Molecular basis of osmotic regulation. Am. J. Physiol. 268:F983–F996.Google Scholar
  7. 7.
    Baumgarten, C. M. and Feher, J. J. 1998. Osmosis and the regulation of cell volume. Second:253–292.Google Scholar
  8. 8.
    Strange, K. and Jackson, P. S. 1995. Swelling-activated organic osmolyte efflux: A new role for anion channels. Kidney Int. 48: 994–1003.Google Scholar
  9. 9.
    Lang, F., Busch, G. L., Ritter, M., Votkl, H., Waldegger, S., Gulbins, E., and Haussinger, D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306.Google Scholar
  10. 10.
    Stein, W. D. 2002. Cell volume homeostasis: ionic and nonionic mechanisms: The sodium pump in the emergence of animal cells. Int. Rev. Cytol. 215:231–258.Google Scholar
  11. 11.
    Gulzouarn, H. and Motais, R. 1999. Swelling activation of transport pathways in erythrocytes: Effects of Cl, ionic strength, and volume changes. Am. J. Physiol. 276:C210–C220.Google Scholar
  12. 12.
    Schousboe, A. and Pasantes-Morales, H. 1992. Role of taurine in neural cell volume regulation. Can. J. Physiol. Pharmacol. 70(Supp):S356–S361.Google Scholar
  13. 13.
    Huxtable, R. J. 1992. Physiological actions of taurine. Physiol. Rev. 72:101–163.Google Scholar
  14. 14.
    Uchida, S., Kwon, H., Preston, A., and Handler, J. 1991. Expression of Madin-Darby canine kidney cell Na+-and Cl-dependent taurine transporter in Xenopus laevis. J. Biol. Chem. 266:9605–9609.Google Scholar
  15. 15.
    Uchida, S., Kwon, H. M., Yamauchi, A., Preston, A. S., Marumo, F., and Handler, J. S. 1992. Molecular cloning of the cDNA for an MDCK cell Na(+)-and Cl(−)-dependent taurine transporter that is regulated by hypertonicity [published erratum appears in Proc. Natl. Acad. Sci. USA 1993; 90:7424]. Proc. Natl. Acad. Sci. USA 89:8230–8234.Google Scholar
  16. 16.
    Strange, K., Emma, F., and Jackson, P. S. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–C730.Google Scholar
  17. 17.
    Duan, D., Winter, C., Cowley, S., Hume, J. R., and Horowitz, B. 1997. Molecular identification of a volume-regulated chloride channel. Nature 390:417–421.Google Scholar
  18. 18.
    Friedrich, T., Breiderhoff, T., and Jentsch, T. J. 1999. Mutational analysis demonstrates that CIC-4 and CIC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274:896–902.Google Scholar
  19. 19.
    Jentsch, T. J. 1994. Molecular physiology of anion channels. Curr. Opin. Cell Biol. 6:600–606.Google Scholar
  20. 20.
    Jentsch, T. J. and Gunther, W. 1997. Chloride channels: An emerging molecular picture. Bioessays 19:117–126.Google Scholar
  21. 21.
    Banderali, U. and Roy, G. 1992. Anion channels for amino acids in MDCK cells. Am. J. Physiol. 263:C1200–C1207.Google Scholar
  22. 22.
    Jackson, P. S. and Strange, K. 1993. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265:C1489–C1500.Google Scholar
  23. 23.
    Sanchez-Olea, R., Morales, M., Garcia, O., and Pasantes-Morales, H. 1996. Cl channel blockers inhibit the volume-activated efflux of Cl and taurine in cultured neurons. Am. J. Physiol. 270:C1703–C1708.Google Scholar
  24. 24.
    Palmer, C. J., Scott, B. T., and Jones, L. R. 1991. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J. Biol. Chem. 266:11126–11130.Google Scholar
  25. 25.
    Bogaev, R. C., Jia, L., Kobayashi, Y. M., Palmer, C. J., Mounsey, J. P., Moorman, J. R., Jones, L. R., and Tucker, A. L. 2001. Gene structure and expression of phospholemman in mouse. Gene, 271: 69–79.Google Scholar
  26. 26.
    Attali, B., Guillemare, E., Lesage, F., Honore, E., Romey, G., Lazdunski, M., and Barhanin, J. 1993. The protein IsK is a dual activator of K+ and Cl channels. Nature 365:850–852.Google Scholar
  27. 27.
    Tzounopoulis, T., Maylie, J., and Adelman, J. P. 1995. Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys. J. 69:904–908.Google Scholar
  28. 28.
    Shimbo, K., Brassard, D. L., Lamb, R. A., and Pinto, L. H. 1995. Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes. Biophy. J. 69:1819–1829.Google Scholar
  29. 29.
    Kowdley, G. C., Ackerman, S. J., John, J. E., Jones, L. R., and Moorman, J. R. 1994. Hyperpolarization-activated chloride currents in Xenopus oocytes. J. Gen. Physiol. 103:217–230.Google Scholar
  30. 30.
    Moorman, J. R., Palmer, C. J., John, J. E., Durieux, M. E., and Jones, L. R. 1992. Phospholemman expression induces a hyper-polarization-activated chloride current in Xenopus oocytes. J. Biol. Chem. 267:14551–14554.Google Scholar
  31. 31.
    Mounsey, J. P., Lu, K. P., Patel, M. K., Chen, Z., Horne, L. T., John, E. J., Means, A. R., Jones, L. R., and Moorman, J. R. 1999. Modulation of phospholemman-induced ion currents by co-expression of protein kinases. Biochim. Biophys. Acta 1451:305–318.Google Scholar
  32. 32.
    Chen, Z., Jones, L. R., and Moorman, J. R. 1999. Ion currents through mutant phospholemman channel molecules. Recept. Channels 6:435–447.Google Scholar
  33. 33.
    Chen, Z., Jones, L. R., O'Brian, J. J., Moorman, J. R., and Cala, S. E. 1998. Structural domains in phospholemman: A possible role for the carboxyl terminus in channel inactivation. Circ. Res. 82: 367–374.Google Scholar
  34. 34.
    Kowdley, G. C., Ackerman, S. J., Chen, Z., Szabo, G., Jones, L. R., and Moorman, J. R. 1997. Anion, cation, and zwitterion-selectivity of phospholemman channel molecules. Biophys. J. 72:141–145.Google Scholar
  35. 35.
    Moorman, J. R., Ackerman, S. J., Kowdley, G. C., Griffin, M. P., Mounsey, J. P., Chen, Z., Cala, S. E., O'Brian, J. J., Szabo, G., and Jones, L. R. 1995. Unitary anion currents through phospholemman channel molecules. Nature 377:737–740.Google Scholar
  36. 36.
    Morrison, B. W. and Leder, P. 1994. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogene 9:3417–3426.Google Scholar
  37. 37.
    Morrison, B. W., Moorman, J. R., Kowdley, G. C., Jones, L. R., and Leder, P. 1995. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes. J. Biol. Chem. 270:2176–2182.Google Scholar
  38. 38.
    Attali, B., Latter, H., Rachamim, N., and Garty, H. 1995. A corticosteroid-induced gene expressing an “lsK-like” K+ channel activity in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 92: 6092–6096.Google Scholar
  39. 39.
    Wald, H., Goldstein, O., Asher, C., Yagil, Y., and Garty, H. 1996. Aldosterone induction and epithelial distribution of CHIF. Am. J. Physiol. 271:F322–F329.Google Scholar
  40. 40.
    Lu, K. P., Osmani, S. A., and Means, A. R. 1993. Properties and regulation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans. J. Biol. Chem. 268:8769–8776.Google Scholar
  41. 41.
    Lu, K. P., Kemp, B. E., and Means, A. R. 1994. Identification of substrate specificity determinants for the cell cycle-regulated NIMA protein kinase. J. Biol. Chem. 269:6603–6607.Google Scholar
  42. 42.
    Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. 2002. Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Proc. Natl. Acad. Sci. USA. 99:11476–11481.Google Scholar
  43. 43.
    Feschenko, M. S., Donnet, C., Wetzel, R. K., Asinovski, N. K., Jones, L. R., and Sweadner, K. J. 2003. Phospholemman, a single-span membrane protein, is an accessory protein of Na, K-ATPase in cerebellum and choroid plexus. J. Neurosci. 23:2161–2169.Google Scholar
  44. 44.
    Crambert, G. and Geering, K. 2003. FXYD proteins: New tissue-specific regulators of the ubiquitous Na, K-ATPase. Sci. STKE. 2003:RE1.Google Scholar
  45. 45.
    Sweadner, K. J. and Rael, E. 2000. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 68:41–56.Google Scholar
  46. 46.
    Morales-Mulia, M., Pasantes-Morales, H., and Moran, J. 2000. Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman. Biochim. Biophys. Acta 1496:252–260.Google Scholar
  47. 47.
    Moran, J., Morales-Mulia, M., and Pasantes-Morales, H. 2001. Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim. Biophys. Acta 1538:313–320.Google Scholar
  48. 48.
    Lambert, I. H. and Hoffmann, E. K. 1994. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse tumour ascites cells. J. Membr. Biol. 142:289–298.Google Scholar
  49. 49.
    Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T. 1996. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83.Google Scholar
  50. 50.
    Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G. 1996. K(V)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80.Google Scholar
  51. 51.
    Chen, L.-S. K., Lo, F., Numann, R., and Cuddy, M. 1997. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics. 41:435–443.Google Scholar
  52. 52.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: A laboratory manual. 2Google Scholar
  53. 53.
    Crowe, W. E., Altamirano, J., Huerto, L., and Alvarez-Leefmans, F. J. 1995. Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69:283–296.Google Scholar
  54. 54.
    Alvarez-Leefmans, F. J., Altamirano, J., and Crowe, W. E. 1995. Use of ion-selective microelectrodes and fluorescent probes to measure cell volume. J. Neurosci. Methods 27:361–391.Google Scholar
  55. 55.
    Jackson, P. S. and Strange, K. 1995. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J. Gen. Physiol. 105:661–677.Google Scholar
  56. 56.
    Bortner, C. D. and Cidlowski, J. A. 1998. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56: 1549–1559.Google Scholar
  57. 57.
    Pawson, T. and Scott, J. D. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080.Google Scholar
  58. 58.
    Dell'Acqua, M. L. and Scott, J. D. 1997. Protein kinase A anchoring. J. Biol. Chem. 272:12881–12884.Google Scholar
  59. 59.
    Okada, Y., Oiki, S., Hazama, A., and Morishima, S. 1998. Criteria for the molecular identification of the volume-sensitive outwardly rectifying Cl channel. J. Gen. Physiol. 112:365–367.Google Scholar
  60. 60.
    Strange, K. 1998. Molecular identity of the outwardly rectifying, swelling-activated anion channel: Time to reevaluate plCln. J. Gen. Physiol. 111:617–622.Google Scholar
  61. 61.
    Clapham, D. E. 1998. The list of potential volume-sensitive chloride currents continues to swell (and shrink). J. Gen. Physiol. 111:623–624.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Cristina E. Davis
    • 1
  • Manoj K. Patel
    • 2
  • James R. Miller
    • 2
  • J. Edward JohnIII
    • 2
  • Larry R. Jones
    • 3
  • Amy L. Tucker
    • 2
    • 4
    • 5
  • J. Paul Mounsey
    • 2
    • 5
  • J. Randall Moorman
    • 2
    • 4
    • 5
  1. 1.Department of Biomedical EngineeringUniversity of Virginia Health Sciences CenterCharlottesville
  2. 2.Department of Internal Medicine (Cardiovascular Division)University of Virginia Health Sciences CenterCharlottesville
  3. 3.Department of Internal MedicineKrannert Institute of Cardiology, Indiana University School of MedicineIndianapolis
  4. 4.Department of Molecular Physiology and Biological PhysicsUniversity of Virginia Health Sciences CenterCharlottesville
  5. 5.Department of Cardiovascular Research CenterUniversity of Virginia Health Sciences CenterCharlottesville

Personalised recommendations