Neurochemical Research

, Volume 29, Issue 1, pp 97–103 | Cite as

Building Biosynthetic Schools: Reviewing Compartmentation of CNS Taurine Synthesis



Taurine is one of the mammalian brain's most abundant and indispensable amino acids. Considerable strides have been made in understanding taurine biosynthesis within the brain, but many disputed issues nonetheless remain. Heading the list is the cellular origin of biosynthetically derived taurine: glial or neuronal? This article reviews the competing theories surrounding cellular compartmentation of taurine biosynthesis in the brain. It concludes that while in vitro systems clearly show astrocytes to be fully capable of taurine synthesis and neurons to be limited to synthesizing taurine from hypotaurine, there is insufficient evidence to attribute these processes to any one cell type in vivo. Instead, there is a growing body of evidence that suggests brain taurine biosynthesis is occurring via a more cooperative metabolic interaction between astrocytes and neurons.

Taurine biosynthesis brain, neuron astrocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pasantés-Moralés, H., Alavez, S., Sanchez Olea, R., and Moran, J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18:445–452.Google Scholar
  2. 2.
    Liu, Y., Tonna-DeMasi, M., Park, E., Schuller-Levis, G., and Quinn, M. R. 1998. Taurine chloramines inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res. Mol. Brain Res. 59:189–195.Google Scholar
  3. 3.
    Marcinkiewicz, J., Grabowska, A., Bereta, J., and Stelmaszynska, T. 1995. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukocyte Biol. 58: 667–674.Google Scholar
  4. 4.
    Green, T. R., Fellman, J. H., Eicher, A. L., and Pratt, K. L. 1991. Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim. Biophys. Acta 23:91–97.Google Scholar
  5. 5.
    Aruoma, O., Halliwell, B., Hoey, B., and Butler, J. 1988. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 265:251–255.Google Scholar
  6. 6.
    Huxtable, R. J. 1989, Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32:471–533.Google Scholar
  7. 7.
    Huxtable, R. J., 1992. Physiological actions of taurine. Physiol. Rev. 72:101–163.Google Scholar
  8. 8.
    Hussy, N., Bres, V., Rochette, M., Duvoid, A., Alonso, G., Dayanithi, G., and Moos, F. 2001. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J. Neurosci. 21:7110–7116.Google Scholar
  9. 9.
    Sturman, J. A. 1993, Taurine in development. Physiol. Rev. 73: 119–147.Google Scholar
  10. 10.
    Hayes, K. C., Carey, R. E., and Schmidt, S. Y., 1975, Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951.Google Scholar
  11. 11.
    Moran, J., Maar, T. E., and Pasantes-Morales, H. 1994. Impaired cell volume regulation in taurine deficient cultured astrocytes. Neurochem. Res. 19:415–420.Google Scholar
  12. 12.
    Kuriyama, K., Ida, S., and Ohkuma, S. 1984. Alteration of cerebral taurine biosynthesis in spontaneously hypertensive rats. J. Neurochem. 42:1600–1606.Google Scholar
  13. 13.
    Peck, E. J. Jr. and Awapara, J. 1967. Formation of taurine and isethionic acid in rat brain. Biochim. Biophys. Acta 141:499–506.Google Scholar
  14. 14.
    Hirschberger, L. L., Daval, S., Stover, P. J., and Stipanuk, M. H. 2001. Murine cysteine dioxygenase gene: Structural organization, tissue-specific expression and promoter identification. Gene 277: 153–161.Google Scholar
  15. 15.
    Tsuboyama, N., Hosokawa, Y., Totani, M., Oka, J., Matsumato, A., Koide, T., and Kodoma, H. 1996. Structural organisation and tissue-specific expression of the gene encoding rat cysteine dioxygenase. Gene 181:161–165.Google Scholar
  16. 16.
    Tappaz, M., Bitoun, M., Reymond, I., and Sergeant, A. 1999. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: Brain and liver enzymes are identical proteins encoded by two distinct mRNAs. J. Neurochem. 73:903–912.Google Scholar
  17. 17.
    Reymond, I., Almarghini, K., and Tappaz, M. 1996. Immunohistochemical localization of cysteine sulfinate decarboxylase in astrocytes in the cerebellum and hippocampus: A quantitative double immunofluourescence study with glial fibrillary acidic protein and S-100 protein. Neuroscience 75:619–633.Google Scholar
  18. 18.
    Kaisaki, P. J., Jerkins, A. A., Goodspeed, D. C., and Steele, R. D. 1995. Cloning and characterization of rat cysteine sulfinic acid decarboxylase. Biochim. Biophys. Acta 1262:79–82.Google Scholar
  19. 19.
    Lombardini, J. B., Singer, T. P., and Boyer, B. 1969. Cysteine dioxygenase: II. Studies on the metabolism of the reaction with 18oxygen. J. Biol. Chem. 244:1172–1175.Google Scholar
  20. 20.
    Sorbo, B. and Ewetz. 1965, Enzymatic oxidation of cysteine to cysteinesulfinate in the rat liver. Biochem. Biophys. Res. Commun. 18:359–363.Google Scholar
  21. 21.
    Yamaguchi, K., Hosokawa, Y., Kohashi, N., Kori, Y., Sakakibara, S., and Ueda, I. 1978. Rat liver cysteine dioxygenase (cysteine oxidase). J. Biochem. 83:479–491.Google Scholar
  22. 22.
    Tappaz, M., Almarghini, K., Legay, F., and Remy, A. 1992. Taurine biosynthesis enzyme cysteine sulfinate decarboxylase (CSD) from brain: The long and tricky trail to identification. Neurochem. Res. 17:849–859.Google Scholar
  23. 23.
    Sumizo, K. 1962. Oxidation of hypotaurine in rat liver. Biochim. Biophys. Acta 63:210–212.Google Scholar
  24. 24.
    Fellman, J. H. and Roth, E. S. 1985. The biological oxidation of hypotaurine to taurine: Hypotaurine as an antioxidant. Pages 71–82, in Oja, S. S., Ahtee, L., Kontro, P., and Paasonen, M. K.(eds.), Taurine: Biological actions and clinical perspectives. New York: Alan R. Liss.Google Scholar
  25. 25.
    Oja, S. S. and Kontro, P. 1981. Oxidation of hypotaurine in vitro by mouse liver and brain tissues. Biochim. Biophys. Acta 677:350–357.Google Scholar
  26. 26.
    Kuriyama, K., Ida, S., Ohkuma, S., and Tanaka, Y. 1985. Alteration of cerebral biosynthesis of taurine in spontaneously hypertensive and 3-acetylpyridine intoxicated rats. Pages 91–103, in Oja, S. S., Ahtee, L., Kontro, P., and Paasonen, M. K.(eds.), Taurine: Biological actions and clinical perspectives. New York: Alan R. Liss.Google Scholar
  27. 27.
    Wu, J. Y. 1982. Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc. Natl. Acad. Sci. USA 79:4270–4274.Google Scholar
  28. 28.
    Lehmann, A. and Hansson, E. 1987. Amino acid content in astroglial primary cultures from different brain regions during cultivation. Neurochem. Res. 12:797–800.Google Scholar
  29. 29.
    Brand, A., Serkowa, N., Flögel, U., and Leibfritz, D. 1995. Volume/osmoregulation in primary neurons and astrocytes in culture. Page 1366, in Annual Meeting of the Society for Magnetic Resonance in Medicine. San Francisco, CA.Google Scholar
  30. 30.
    Bitoun, M. and Tappaz, M. 2000. Taurine down-regulates basal and osmolarity-induced gene expression of its transporter, but not the gene expression of its biosynthetic enzymes in astrocyte primary cultures. J. Neurochem. 75:919–924.Google Scholar
  31. 31.
    Beetsch, J. W. and Olson, J. E. 1998. Taurine synthesis and cysteine metabolism in cultured rat astrocytes: Effects of hyperosmotic culture. Am. J. Physiol. 274:C866–C874.Google Scholar
  32. 32.
    Brand, A., Leibfritz, D., Hamprecht, B., and Dringen, R. 1998. Metabolism of cysteine in astroglial cells: Synthesis of hypotaurine and taurine. J. Neurochem. 71:827–832.Google Scholar
  33. 33.
    Bitoun, M. and Tappaz, M. 2000. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions. Glia 32:165–176.Google Scholar
  34. 34.
    Dominy, J. Jr. and Dawson, R. Jr. 2003. Taurine and hypotaurine dynamics in activated C6 glioma. in, Lombardini, B., Schaffer, S., and Azuma, J. (eds.), Taurine 5. New York: Kluwer Plenum. (in press).Google Scholar
  35. 35.
    Almarghini, K., Remy, A., and Tappaz, M. 1991. Immunocytochemistry of the taurine biosynthesis enzyme, cysteine sulfinate decarboxylase, in the cerebellum: Evidence for a glial localization. Neuroscience 43:111–119.Google Scholar
  36. 36.
    Chan-Palay, V., Lin, C., Palay, S., Yamamoto, M., and Wu, J. 1982. Taurine in the mammalian cerebellum: Demonstration by autoradiography with [3H]taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase. Proc. Natl. Acad Sci. USA 79:2695–2699.Google Scholar
  37. 37.
    Chan-Palay, V., Lin, C., Palay, S., and Wu, J. 1982. Sagittal cerebellar microbands of taurine neurons: Immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme, cysteine sulfinic acid decarboxylase. Proc. Natl. Acad. Sci. USA 79:4221–4225.Google Scholar
  38. 38.
    Taber, K. H., Lin, C. T., Liu, J. W., Thalmann, R. H., and Wu, J. Y. 1986. Taurine in hippocampus: Localization and postsynaptic action. Brain Res. 386:113–121.Google Scholar
  39. 39.
    Magnusson, K. R., Clements, J. R., Wu, J. Y., and Beitz, A. J. 1988. Colocalization of taurine-and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 4:55–59.Google Scholar
  40. 40.
    Remy, A., Henry, S., and Tappaz, M. 1990. Specific antiserum and monoclonal antibodies against taurine biosynthesis enzyme cysteine sulfinic acid decarboxylase: Identity of brain and liver enzyme. J. Neurochem. 54:870–879.Google Scholar
  41. 41.
    Parsons, R. B., Barber, P. C., Waring, R. H., Williams, A. C., and Ramsden, D. B. 1998. Cysteine dioxygenase: Regional expression of activity in rat brain. Neurosci. Lett. 248:101–104.Google Scholar
  42. 42.
    Parsons, R. B., Waring, R. H., Williams, A. C., and Ramsden, D. B. 2001. Cysteine dioxygenase: Regional localization of protein and mRNA in rat brain. J. Neurosci. Res. 65:78–84.Google Scholar
  43. 43.
    Griffiths, R. 1990. Cysteine sulphinate (CSA) as an excitatory amino acid transmitter candidate in the mammalian central nervous system. Prog. Neurobiol. 35:313–323.Google Scholar
  44. 44.
    Brand, A., Richter-Landsberg, C., and Leibfritz, D. 1997. Metabolism of acetate in rat brain neurons astrocytes and cocultures: Metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy. Cell Mol. Biol. 43:645–657.Google Scholar
  45. 45.
    Olson, J. E. and Li, G. Z. 2000. Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells. Adv. Exp. Med. Biol. 483:213–218.Google Scholar
  46. 46.
    Brand, A., Sonnewald, U., Richter-Landsberg, C., Petersen, S. B., and Leibfritz, D. 1994. 1H NMR spectroscopy study of hypotaurine in brain cell cultures and in human brain extracts. Annual Meeting of the International Society of Magnetic Resonance in Medicine, p. 1776. Nice, France.Google Scholar
  47. 47.
    Brand, A., Richter-Landsberg, C., and Leibfritz, D. 1993. Multi-nuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15:289–298.Google Scholar
  48. 48.
    Okuhoma, S., Tomono, S., Tanaka, Y., Kuriyama, K., and Mukainaka, T. 1986. Development of taurine biosynthesizing system in cerebral cortical neurons in primary culture. Int. J. Dev. Neurosci. 4:383–395.Google Scholar
  49. 49.
    Wu, J., Tang, X. W., Schloss, J. V., and Faiman, M. D. 1997. Regulation of taurine biosynthesis and its physiological significance in the brain. J. Neurosci. 17:6947–6951.Google Scholar
  50. 50.
    Morishita, W. and Alger, B. 1999. Evidence for endogenous excitatory amino acids as mediators in DSI of GABAAergic transmission in hippocampal CA1.Am. J. Physiol. Soc. 82:2556–2564.Google Scholar
  51. 51.
    Croucher, M., Thomas, L., Ahmadi, H., Lawrence, V., and Harris, J. 2001. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system. Br. J. Pharmacol. 133:815–824.Google Scholar
  52. 52.
    Kwon, Y. H. and Stipanuk, M. H. 2001. Cysteine regulates expression of cysteine dioxygenase and gamma-glutamylcysteine synthetase in cultured rat hepatocytes. Am. J. Physiol. Endocrinol. Metab. 280:E804–E815.Google Scholar
  53. 53.
    Stipanuk, M. H., Londono, M., and Hirschberger, L. L. 2003. Cysteine-responsive regulation of hepatic cysteine dioxygenase by the ubiquitin-proteasome system. FASEB J. 17:49.Google Scholar
  54. 54.
    Griffith, O. W. 1983. Cysteinesulfinate metabolism: Altered partitioning between transamination and decarboxylation following administration of β-methyleneaspartate. J. Biol. Chem. 258: 1591–1598.Google Scholar
  55. 55.
    Molina, J. A., Jimenez-Jimenez, F. J., Gomez, P., Vargas, C., Navarro, J. A., Orti-Pareja, M., Gasalla, T., Benito-Leon, J., Bermejo, F., and Arenas, J. 1997. Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson's disease. J. Neurol. Sci. 150:123–127.Google Scholar
  56. 56.
    Perry, T. L., Norman, M. G., Yong, V. W., Whiting, S., Crichton, J. U., Hansen, S., and Kish, S. J. 1985. Hallervorden-Spatz disease: Cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann. Neurol. 18:482–489.Google Scholar
  57. 57.
    Heafield, M. T., Fearn, S., Steventon, G. B., Waring, R. H., Williams, A. C., and Sturman, S. G. 1990. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's, and Alzheimer's disease. Neurosci. Lett. 110:216–220.Google Scholar
  58. 58.
    Sumners, C. and Myers, L. M. 1991. Angiotensin II decreases cGMP levels in neuronal cultures from rat brain. Am. J. Physiol. 260:C79–C87.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of PharmacodynamicsUniversity of FloridaGainesville

Personalised recommendations