Journal of Nanoparticle Research

, Volume 6, Issue 1, pp 63–70 | Cite as

Flame Temperature Effect on the Structure of SiC Nanoparticles Grown by Laser Pyrolysis

  • N. Herlin-Boime
  • J. Vicens
  • C. Dufour
  • F. Ténégal
  • C. Reynaud
  • R. Rizk

Abstract

Small SiC nanoparticles (10 nm diameter) have been grown in a flow reactor by CO2 laser pyrolysis from a C2H2 and SiH4 mixture. The laser radiation is strongly absorbed by SiH4 vibration. The energy is transferred to the reactive medium and leads to the dissociation of molecules and the subsequent growth of the nanoparticles. The reaction happens with a flame. The purpose of the experiments reported in this paper is to limit the size of the growing particles to the nanometric scale for which specific properties are expected to appear. Therefore the effects of experimental parameters on the structure and chemical composition of nanoparticles have been investigated. For a given reactive mixture and gas velocity, the flame temperature is governed by the laser power. In this study, the temperature was varied from 875°C to 1100°C. The chemical analysis of the products indicate that their composition is a function of the temperature. For the same C/Si atomic ratio in the gaseous phase, the C/Si ratio in the powder increases from 0.7 at 875°C up to 1.02 at 1100°C, indicating a growth mechanism limited by C2H2 dissociation. As expected, X-ray diffraction has shown an improved crystallisation with increasing temperature. Transmission electron microscopy observations have revealed the formation of 10 nm grains for all values of laser power (or flame temperature). These grains appear amorphous at low temperature, whereas they contain an increasing number of nanocrystals (2 nm diameter) when the temperature increases. These results pave the way to a better control of the structure and chemical composition of laser synthesised SiC nanoparticles in the 10 nm range.

laser pyrolysis silicon carbide High resolution TEM CO2 laser Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borsella E., L. Caneve, R. Fantoni, S. Piccirillo, N. Basili & S. Enzo, 1989. Investigation of the mechanism of CO2 laser driven production of ultrafine sinterable (Si3N4 and SiC) powders. Appl. Surf. Sci. 36, 213.Google Scholar
  2. Boucle J., A. Kassiba, J. Emery, I.V. Kityk, M. Makowska-Janusik, J. Sanetra, N. Herlin-Boime & M. Mayne, 2002. Local electrooptic effect of the SiC large-sized nanocrystallites incorporated in polymer matrix. Phys. Lett. A 302(4), 196.Google Scholar
  3. Cannon W.R., S.C. Danforth, J.S. Haggerty & R.A. Marra, 1986. Sinterable ceramic powders from laser-driven reactions: Pro-cess description and modelling. J. Amer. Ceram. Soc. 65, 330.Google Scholar
  4. Cauchetier M., O. Croix & M. Luce, 1988. Laser synthesis of silicon carbide powders from silane and hydrocarbon mixtures. Adv. Ceram. Mater. 3, 548-552.Google Scholar
  5. Demichelis F., C.F. Pirri & E. Tresso, 1992. Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide. J. Appl. Phys. 72(4), 1327-1333.Google Scholar
  6. Fantoni R., E. Borsella, S. Piccirillo & E.S. Ceccato, 1990. Laser synthesis and crystallographic characterization of ultrafine SiC powders. J. Mater. Res. 5(1), 143-150.Google Scholar
  7. Fantoni R., F. Bijnen, N. Djuric & S. Picirillo, 1991. Resonance CARS detection of SiC2 as reaction intermediate in IR Laser synthesis of SiC from SiH4/hydrocarbon mixtures. Appl. Phys. B 52(3), 176.Google Scholar
  8. Flint J.H. & Haggerty J.S., 1988. Models for synthesis of ceramic powders by vapor phase reactions. Ceram. Trans. 1, 244.Google Scholar
  9. Gheorghiu A., C. Senemaud, H. Roulet, G. Dufour, T. Moreno, S. Bodeur, C. Reynaud, M. Cauchetier & M. Luce, 1992. Atomic configurations and local order in laser-synthesized Si, Si-N, Si-C, and Si-C-N nanometric powders, as studied by X-ray-induced photoelectron spectroscopy and extended X-ray-absorption fine-structure analysis. J. Appl. Phys. 71(9), 4118.Google Scholar
  10. Huisken F., B. Kohn, R. Alexandrescu, S. Cojocaru, A. Crunteanu, G. Ledoux & C. Reynaud, 1999. Silicon Carbide nanoparticles produced by CO2 laser pyrolysis of SiH4/C2H2 gas mixtures in a flow reactor. J. Nanoparticle Res. 1, 293-303.Google Scholar
  11. Huisken F., G. Ledoux, O. Guillois & C. Reynaud, 2002. Light-emitting silicon nanocrystals from laser pyrolysis.Adv. Mat. 14, 1861.Google Scholar
  12. Kerdiles S., R. Rizk, A. P´erez, Rodriguez, B. Garrido, O. Gonzalez-Varona, L. Calvo-Barrio & J.R. Morante, 1998. Magnetron sputtering synthesis of silicon-carbon films: Structural and optical characterization. Solid-State Electron. 42(12), 2315-2320.Google Scholar
  13. Kerdiles S., A. Hairie, R. Rizk & C. Guedj, 2001. xCx alloys. Phys. Rev. B 63(20), 205206/1-4.Google Scholar
  14. Kerdiles S. & R. Rizk, 2002. Lowtemperature nanocrystallization of silicon carbide by hydrogen reactive magnetron sputtering. Phil. Mag. A 82, 601-614.Google Scholar
  15. Klug H. & L. Alexander, 1974. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley, New York.Google Scholar
  16. Ledoux G., O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn & V. Paillard, 2000. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62(23), 15942.Google Scholar
  17. Lee B.T., D.K. Kim, C.K. Moon & J.K. Kim, 1999. Microstructural investigation of lowtemperature chemical vapor deposited 3C-SiC/Si thin films using single-source precursors. J. Mater. Res. 14, 24-28.Google Scholar
  18. Lihrmann J.M. & M. Cauchetier, 1994. Amodel for the formation of nanosized SiC powders by laser Induced gas phase reaction. J. Eur. Ceram. Soc. 13(1), 41.Google Scholar
  19. Melchior H. 1972. Demodulation and photodetection techniques. In: Arecchi F.T. and Schultz-Dubois E.O. eds. Handbook, Vol 1. North-Holland, Amsterdam, pp. 725, 992.Google Scholar
  20. Rietveld H.M. 1969, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2(2), 65-71Google Scholar
  21. Sawano K., J.S. Haggerty & H.K. Bowen, 1987. Formation of SiC powder from laser heated vapor phase reactions. Yogyo-Kyokai-Shi. 95(1), 64.Google Scholar
  22. Spitzer G., D.A. Kleiman & D. Walsh, 1959. Phys. Rev. 113, 127.Google Scholar
  23. Takeshita T., Y. Kurata & S. Hasegawa, 1992. Bonding properties of glow-discharge polycrystalline and amorphous Si-C films studied by X-ray diffraction and X-ray photoelectron spectroscopy. J. Appl. Phys. 71(11), 5395-5400.Google Scholar
  24. Tardieu de Malleissye J., F. Lempereur & C. Marsal, 1972. Pyro-lyse de l'ac´ etyl' ene sous l'action d'un laser ' a gaz carbonique. C.R. Acad. Sci. C. 275, 1153-1155.Google Scholar
  25. Tougne P., H. Hommel, A.P. Legrand, N. Herlin, M. Luce & M. Cauchetier, 1993. Evolution of the structure of ultrafine SiC laser formed powders with synthesis conditions. Diamond Relat. Mater. 2, 486.Google Scholar
  26. Vassen R. & D. St¨over, 1999. Processing and properties of nanograin silicon carbide. J. Am. Ceram. Soc. 32, 3623-3637.Google Scholar
  27. Veprek S., Z. Iqbal, R.O. K¨uhne, P. Capezzato, F.A. Sarrott & J.K. Gimzekski, 1983. Properties of microcrystalline silicon. IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption. J. Phys. C. 16(32), 6241-6262.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • N. Herlin-Boime
    • 1
  • J. Vicens
    • 2
  • C. Dufour
    • 2
  • F. Ténégal
    • 1
    • 1
  • C. Reynaud
    • 1
  • R. Rizk
    • 2
  1. 1.Service des Photons, Atomes et MoléculesLaboratoire Francis Perrin (CEA-CNRS URA 2453), CEA SaclayGif/Yvette CedexFrance
  2. 2.ENSICAENLaboratoire d'Etudes et de Recherches sur les Matériaux (LERMAT) (CNRS 2139)Caen CedexFrance

Personalised recommendations