Journal of Nanoparticle Research

, Volume 6, Issue 1, pp 35–46 | Cite as

Identification of the Dispersion Behavior of Surface Treated Nanoscale Powders

  • C. Saltiel
  • Q. Chen
  • S. Manickavasagam
  • L.S. Schadler
  • R.W. Siegel
  • M.P. Menguc
Article

Abstract

The stability of highly acidic metal oxide surface treatments on rutile titanium dioxide nanopowders (40 nm nominal particle size) is examined. Dispersions are characterized in terms of their sedimentation behavior and light scattering pattern. Using elliptically polarized light scattering (EPLS), agglomerates are identified as fractal structures and size analysis is performed according to the measured fractal dimension. The effect of ultrasonication on agglomerate size and structure (compactness) is quantified for tungsten oxide and molybdenum oxide surface treatments, as well as untreated titanium oxide. Surface treatments are shown to increase dispersion stability, as witnessed by the decreased size of large agglomerates and sedimentation behavior. The EPLS fractal studies, combined with ultrasonication analysis, reveals information of agglomerate shapes, primary particle bonds and structures, and agglomerate growth mechanisms.

nanoparticle agglomeration acid-treatment light scattering sonication colloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair J.H., E. Suvaci & J. Sindel, 2001. Surface and Colloid Chemistry of Advanced Ceramics, Encyclopedia of Materials: Science and Technology. Elsevier Publishing, The Netherlands, pp. 8996-9006.Google Scholar
  2. Bohren C.F. & D.R. Huffman, 1983. Absorption and Scattering of Light by Small Particles, Wiley, New York.Google Scholar
  3. Bushell G.C., Y.D. Yan, D. Woodfield, J. Raper & R. Amal, 2002. On techniques for the measurement of mass fractal dimension of aggregates. Adv. Colloid Interface Sci. 95, 1-50.PubMedGoogle Scholar
  4. Conley R., 1996. Practical Dispersion: A Guide to Understanding and Formulating Slurries. VCH Publishers, New York.Google Scholar
  5. Freltoft T., J.K. Kjems & S.K. Sinha, 1986. Power-law correla-tions and finite-size effects in silica particle aggregates studied by small angle neutron-scattering. Physical Rev. B: Condensed Matter 33, 269.Google Scholar
  6. Ishida H. ed., 1988. Interfaces in Polymer, Ceramic, and Metal Matrix Composites. Elsevier Science Publishing Co., Inc., Burlington, Ma., pp. 17-33.Google Scholar
  7. Iskander M.F., H.Y. Chen & J.E. Penner, 1989. Optical scattering and absorption by branched chains of aerosols. Appl. Optics 28, 3083-3091.Google Scholar
  8. Jullien R., 1986. A new model of cluster aggregation. J. Phys. A: Math. Gen. 19, 2129-2136.Google Scholar
  9. Kelsall D.F., P.S.B. Steware & K.R. Weller, 1973. Continu-ous grinding in a small wet ball mill. Powder Technol. 7, 293-301.Google Scholar
  10. Lattuada M., H. Wu & M. Morbidelli, 2001. Estimation of fractal dimension of colloidal gels in the presence of multiple scattering. Physical Rev. E 64, 061404-1-7.Google Scholar
  11. Manickavasagam S. & M.P. Menguc, 1997. Scattering matrix elements of fractal-like soot agglomerates. Appl. Optics 36(6), 1337-1351.Google Scholar
  12. Meakin P., Z-Y. Chen & P. Evesque, 1987. Aggregation of anisotropic particles. J. Chem. Phys. 87(1), 630-635.Google Scholar
  13. Mishchenko M., J.W. Hovenier & L.D. Travis, 1999. Light Scattering by Nonspherical Particles. Academic Press, New York.Google Scholar
  14. Morrison I.D. & S. Ross, 2002. Colloidal Dispersions: Suspensions, Emulsions, and Foams. Wiley Interscience, New York.Google Scholar
  15. Monte S.J., 1989. Increased Productivity of Thermoplastics Using Organic Titanate and Zirconate Coupling Agents, pre-sented at ANTEC 89, SPE 47th Annual Technical Conference, New York, May 1-4.Google Scholar
  16. Seymour R.B. ed., 1991. Reinforced Plastics, Properties & Applications, Materials Park, Ohio: ASM International.Google Scholar
  17. Song K.Y., M.K. Park & Y.T. Kwon, 2001. Preparation of trans-parent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chem. Mater. 13, 2349-2355.Google Scholar
  18. Stein H.N., 1996. The Preparation of Dispersions in Liquids. Marcel Dekker Inc., New York.Google Scholar
  19. van de Hulst H.C., 1981. Light Scattering by Small Particles. Dover, New York.Google Scholar
  20. Vasylkiv O. & Y. Sakka, 2001. Synthesis and colloidal procesing of zirconia powder. J. Am. Ceramic Soc. 84(11), 2489-2494.Google Scholar
  21. Vicsek T., 1999. Fractal Growth Phenomena, 2nd edn. World Scientific Publishers, Singapore.Google Scholar
  22. Warren L.J., 1984. In: Jones M.H. and Woodcock J.T. eds. Principles of Mineral Flotation. Australasian Institute of Mining and Metallurgy, Carlton, South Victoria, Australia.Google Scholar
  23. Widegren J., 2002. Electrostatic stabilization of ultrafine titania in ethanol. J. Am. Ceramic Soc. 85(3), 523-528.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Saltiel
    • 1
  • Q. Chen
    • 2
  • S. Manickavasagam
    • 1
  • L.S. Schadler
    • 2
  • R.W. Siegel
    • 2
  • M.P. Menguc
    • 3
  1. 1.Synergetic Technologies Inc.RensselaerUSA
  2. 2.Rensselaer Nanotechnology Center and Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations