Journal of Nanoparticle Research

, Volume 5, Issue 5–6, pp 589–596 | Cite as

Formation of Silica-Embedded Iron-Oxide Nanoparticles in Low-Pressure Flames

  • Christian Janzen
  • Jörg Knipping
  • Bernd Rellinghaus
  • Paul Roth
Article

Abstract

The formation of γ-Fe2O3 nanoparticles embedded in a silica matrix has been studied in low-pressure premixed flames of hydrogen and oxygen. The organometallic precursors iron-pentacarbonyl (Fe(CO)5) and tetramethylsilane (Si(CH3)4) were used as starting materials for the core particles and matrix material, respectively. Fe2O3 particles with a diameter of about 3–7nm were successfully embedded in a surrounding silica matrix of about 9–13nm in diameter. The iron oxide particle kernels are superparamagnetic at room temperature.

Fe2O3/SiO2 nano-composits low-pressure flame superparamagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin A.C., I.M. Davidson & M.D. Reed, 1974. J. Chem. Soc. Faraday Trans. 1, 217.Google Scholar
  2. Brochin F., X. Devaux, J. Ghanbaja & H. Scherrer, 1999. Nanostruct. Mater. 11, 1.Google Scholar
  3. Buchta C., D.V. Stucken, J.T. Vollmer & H.G. Wagner, 1992. Z. Phys. Chem. 177, 1.Google Scholar
  4. Cullity B.D., 1972. Introduction to magnetic materials, Addison-Wesley Publishing Company, Reading, MA, USA.Google Scholar
  5. Ehrman S.H., S.K. Friedlander & M.R. Zachariah, 1998. J. Aerosol Sci. 29, 687.Google Scholar
  6. Ehrman S.H., M.I. Aquino-Class & M.R. Zachariah, 1999. J. Mater. Res. 14, 1664.Google Scholar
  7. Hospital A. & P. Roth, 1990. 23rd Symposium (International) on Combustion, The Combustion Institute 1573.Google Scholar
  8. Hung Ch.-H. & J.L. Katz, 1992. J. Mater. Res. 7, 1861–1869.Google Scholar
  9. Hung Ch.-H., P.F. Miquel & J.L. Katz, 1992. J. Mater. Res. 7, 1870.Google Scholar
  10. Kurz A., 2000. Diploma thesis, Gerhard-Mercator University, Duisburg. Janzen C. & P. Roth, 2001. Combust. Flame 125, 1150.Google Scholar
  11. Lindackers D., M.G.D. Strecker, P. Roth, C. Janzen & S.E. Pratsinis, 1997. Combust. Sci. Tech. 123, 287.Google Scholar
  12. Roth P. & A. Hospital, 1994. J. Aerosol Sci. 25, 61.Google Scholar
  13. Spicer P.T., C. Artelt, S. Sanders & S.E. Pratinis, 1998. J. Aerosol Sci. 29, 647.Google Scholar
  14. Viswanath R.N. & S. Ramasamy, 1999. Nanostruct. Mater. 12, 1085.Google Scholar
  15. Vollath D., D.V. Szab#x00F3; & J. Haußelt, 1997. J. Eur. Ceram. Soc. 17, 1317.Google Scholar
  16. Vollath D., D.V. Szab#x00F3; & J. Fuchs, 1999. Nanostruct. Mater. 12, 433.Google Scholar
  17. Warren B.E., 1969. X-ray Diffraction, Dover Publications, Inc., New York, p. 253.Google Scholar
  18. Woiki D., A. Giesen & P. Roth, 2002. Proceedings of the 23rd International Symposium Shock Waves 447.Google Scholar
  19. Zachariah M.R., M.I. Aquino, R.D. Shull & E.B. Steel, 1995. Nanostruct. Mater. 5, 383.Google Scholar
  20. Zhang L., G.C. Papaefthymiou & J.Y. Ying, 2001. J. Appl. Phys. 125, 1150.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Christian Janzen
    • 1
  • Jörg Knipping
    • 1
  • Bernd Rellinghaus
    • 1
  • Paul Roth
    • 1
  1. 1.Institut für Verbrennung und GasdynamikUniversität Duisburg – EssenDuisburgGermany

Personalised recommendations