Journal of Nanoparticle Research

, Volume 5, Issue 5–6, pp 577–587

Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation

  • Sujit Kumar Ghosh
  • Subrata Kundu
  • Madhuri Mandal
  • Sudip Nath
  • Tarasankar Pal
Article

Abstract

Ultraviolet (UV) photoirradiation of Ag(I) compounds in the presence of an aqueous Triton X-100 solution has been exploited for the first time to prepare reproducible yellow silver hydrosol. The evolution of nanosized silver particles has been examined critically under the influence of different anions/ligands. Hence, time dependent evolution of silver hydrosol from different silver compounds in micelle via photochemical reduction is observed. Anions/ligands of precursor salts have been found to show profound influence (due to electron scavenging property, solubility, stability etc.) on the evolution route and efficiency of photochemical reduction of Ag(I) to Ag(O) in micelle and thereby classification of silver compounds becomes possible. Kinetic results reveal that the formation of silver particles proceeds via autocatalytic growth mechanism. The observed variation in rate constant values for the evolution of nanoparticles from different silver compounds have been explained in terms of available thermodynamic and kinetic parameters. Nucleophile induced dissolution and reversible photogeneration of zerovalent silver particles have been investigated under ambient condition.

silver nanoparticles micelle UV-irradiation electrolytic effect dissolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abid J.P., A.W. Wark, P.F. Brevet & H.H. Girault, 2002. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. J. Chem. Soc. Chem. Commun. 792–793.Google Scholar
  2. Alivisatos A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. B 100, 13226–13239.Google Scholar
  3. Belloni J., M. Mostafavi, H. Remita, J.L. Marignier & M.O. Delcourt, 1998. Radiation-induced synthesis of monoand multi-metallic clusters and nanocolloids. NewJ. Chem. 22, 1239–1255.Google Scholar
  4. Brust M., M. Walker, D. Bethel, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatized gold nanoparticles in a twophase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802.Google Scholar
  5. Cheng H. & U. Landman, 1994. Controlled deposition and glassification of copper nanoclusters. J. Phys. Chem. 98, 3527–3537.Google Scholar
  6. Esumi K., T. Hosoya, A. Suzuki & K. Torigoe, 2000. Spontaneous formation of gold nanoparticles in aqueous solution of sugarpersubstituted poly(amidoamine) dendrimers. Langmuir 16, 2978–2980.Google Scholar
  7. Eychmüller A., 2000. Structure and photophysics of semiconductor nanocrystals. J. Phys. Chem. B 104, 6514–6528.Google Scholar
  8. Goia D.V. & E. Matijević, 1998. Preparation of monodispersed metal particles. New J. Chem. 22, 1203–1215.Google Scholar
  9. Gutiérrez M. & A. Henglein, 1993. Formation of colloidal silver by ‘push–pull’ reduction of silver(1+). J. Phys. Chem. 97, 11368–11370.Google Scholar
  10. Heath J.R. & J.J. Shiang, 1998. Covalency in semiconductor quantum dots. Chem. Soc. Rev. 65–71.Google Scholar
  11. Henglein A., 1993. Physicochemical properties of small metal particles in solution: ‘Microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471.Google Scholar
  12. Henglein A., 1998. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14, 7392–7396.Google Scholar
  13. Huang Z.Y., G. Mills & B. Hajek, 1993. Spontaneous formation of silver particles in basic 2-propanol. J. Phys. Chem. 97, 11542–11550.Google Scholar
  14. Jin R., Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz & J.G. Zheng, 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903.Google Scholar
  15. Kamat P.V., 1993. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93, 267–300.Google Scholar
  16. Kamat P.V., 1997. In: Kamat P.V. and Miesel D. eds. Semiconductor Nanoclusters – Physical, Chemical and Catalytic Aspects. Elsevier Science, Amsterdam, pp. 237–259.Google Scholar
  17. Kamat P.V., M. Flumiani & G.V. Hartland, 1998. Picosecond dynamics of silver nanoclusters photoejection of electrons and fragmentation. J. Phys. Chem. B 102, 3123–3128.Google Scholar
  18. Kreibig U. & M. Vollmer, 1995. Optical Properties of Metal Clusters. Springer, Berlin.Google Scholar
  19. Kreibig U., M. Gartz, A. Hilger & H. Hovel, 1996. In: Pelizzatti E. ed. Fine Particles Science and Technology. Kluwer Academic Publishers, Boston, p. 499.Google Scholar
  20. Lawless D., S. Kapoor, P. Kennephol, D. Miesel & N. Serpone, 1994. Reduction and aggregation of silver ions at the surface of colloidal silica. J. Phys. Chem. 98, 9619–9625.Google Scholar
  21. Link S. & M.A. El-Sayed, 1999a. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217.Google Scholar
  22. Link S. & M. A. El-Sayed, 1999b. Spectral properties and relaxation dynamics of surface plaE. Pelizzattismon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426.Google Scholar
  23. Manna L., E.C. Scher & A.P. Alivisatos, 2000. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706.Google Scholar
  24. Mie G., 1908. Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25, 377–445.Google Scholar
  25. Mizukoshi Y., K. Okitsu, Y. Maeda, T.A. Yamamoto, R. Oshima & Y. Nagata, 1997. Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101, 7033–7037.Google Scholar
  26. Mostafavi M. & J. Belloni, 1997. Ligand-dependent properties of transient and long-lived metal clusters in solution. Recent Res. Develop. Phys. Chem. 1, 459–474.Google Scholar
  27. Mulvaney P., M. Giersig & A. Henglein, 1993. Electrochemistry of multilayer colloids: Preparation and absorption spectrum of gold-coated silver particles. J. Phys. Chem. 97, 7061–7064.Google Scholar
  28. Mulvaney P., 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800.Google Scholar
  29. Mulvaney P., 1997. In: Kamat P.V. and Miesel D. eds. Semiconductor Nanoclusters – Physical, Chemical and Catalytic Aspects. Elsevier Science, Amsterdam, p. 99.Google Scholar
  30. Mulvaney P., L.M. Liz-Marzan, M. Giersig & T. Ung, 2000. Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10, 1259–1270.Google Scholar
  31. Nirmal M., B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris & L.E. Brus, 1996. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804.Google Scholar
  32. Ostwald W., 1901. The history of colloidal gold. Z. Chem. Ind. Kolloide 4(1909), 5–14.Google Scholar
  33. Pal A., 1998. Photoinduced gold sol generation in aqueous Triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 46, 583–587.Google Scholar
  34. Pal T., A. Ganguly & D.S. Maity, 1986. Determination of cyanide based upon its reaction with colloidal silver in the presence of oxygen. Anal. Chem. 58, 1564–1566.Google Scholar
  35. Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices. New J. Chem. 22, 693–702.Google Scholar
  36. Pileni M.P., 2001. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371.Google Scholar
  37. Privman V., D.V. Gioa, P. Jongsoon & E. Matijevié 1999. Mechanism of formation of monodispersed colloids by nanosize precursors. J. Colloid Interface Sci. 213, 36–45.Google Scholar
  38. Pontoni D., T. Narayanan & A.R. Rennie, 2002. Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18, 56–59.Google Scholar
  39. Sau T.K., A. Pal & T. Pal, 2001. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272.Google Scholar
  40. Sloezynski J. & W. Bobinski, 1991. Autocatalytic effect in the processes of metal oxide. J. Solid State Chem. 92, 420–448.Google Scholar
  41. Talapin D.V., A.L. Rogach, M. Hasse & H. Weller, 2001. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 105, 12278–12285.Google Scholar
  42. Treguer M., C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni & R. de Keyzer, 1998. Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution. J. Phys. Chem. B 102, 4310–4321.Google Scholar
  43. Wang Y. & N. Herron, 1996. X-ray photoconductive nanocomposites. Science 273, 632–634.Google Scholar
  44. Whetten R.L., M.N. Shafigullin, J.T. Khoury, T.G. Schaaff, I. Vezmar, M.M. Alvarez & A. Wilkinson, 1999. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 32, 397–406.Google Scholar
  45. Yonezawa Y., T. Sato, S. Kuroda & K. Kuge, 1991. Photochemical formation of colloidal silver: Peptizing action of acetone ketyl radical. J. Chem. Soc. Faraday Trans. 87, 1905–1910.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sujit Kumar Ghosh
    • 1
  • Subrata Kundu
    • 1
  • Madhuri Mandal
    • 1
  • Sudip Nath
    • 1
  • Tarasankar Pal
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpur-India

Personalised recommendations