Journal of Nanoparticle Research

, Volume 5, Issue 5–6, pp 539–550 | Cite as

Electric Explosion of Wires as a Method for Preparation of Nanopowders

  • Yu A. Kotov

Abstract

The development of the method of electric explosion of wires and research results concerning preparation of nanopowders by this method has been reviewed. The method is highly productive (up to 200g/h), provides powders with an average particle size of 20–100nm, and requires an energy consumption of about 25kWh/kg. Several characteristics of the nanopowders will be given and their applications will be exemplified too.

burning electrical explosion metal wire nanoparticles nanopowders oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson G.W. & E.W. Neilson, 1959. Use of the action integral in exploding wire studies. In: Chace W.G. and More H.K. eds. Exploding Wires, Vol. 1. Proc. of 1st Conf. on the Exploding Wire Phenomenon, Boston, USA, 24–27 March 1959. Plenum Press, New York, pp. 97–103.Google Scholar
  2. Azarkevich E.I., 1973. Using similarity theory for calculating some characteristics of EEW. Zh. Sov. Techn. Fiz. 43, 141–145 (in Russ.).Google Scholar
  3. Azarkevich, E.I., Y.A. Kotov & V.S. Sedoi, 1975. Conditions of current pause appearance at EE. Zh. Sov. Techn. Fiz. 45, 175–177 (in Russ.).Google Scholar
  4. Azarkevich E.I., A.P. Ilyin, D.V. Tikhonov & G.V. Yablunovski, 1997. Electric explosion sintering ultrafine powders of alloys and intermetallides. Zh. Russ. Fiz. Chem. Mater. Treatment 4, 85–88 (in Russ.).Google Scholar
  5. Azarkevich E.I., I.V. Beketov & Y.A. Kotov, 2001. Producing iron oxide powders with specific surface up to 100m2/g by EEW method. In: Kotov Y.A., Petrunin V.F. and Ivanov V.V. eds, Proc. of 5th Russian conf. ‘Phys. and Chemistry of Ultrafine Systems’, Part 1, Ekaterinburg, Russia, 9–13 October 2000, pp. 93–95 (in Russ.).Google Scholar
  6. Azarkevich E.I., Yu.A. Kotov & A.I. Medvedev, 2003. Preparing Cu-oxide powders by EEW method. In: Alymov M.I., Yu.V. Petrikin and V.F. Petrunin eds, Proc. of 6th Russian Conf. ‘Phys. and Chemistry of Ultrafine (Nano-). Systems’, 19–23 August, 2002, Tomsk, Russia, Moscow, MEPI, 114–117 (in Russ.).Google Scholar
  7. Bennett F.D., 1969. High-temperature exploding wires. In: Rouse C.A. ed. Collected papers: Progress in high-temperature physics and chemistry. New York, Pergamon Press, pp. 2–63.Google Scholar
  8. Chace W.G., 1959. A brief survey of exploding wire research. In: Chace W.G. and More H.K. eds. ExplodingWires, Vol. 1. Proc. of 1st Conf. on the ExplodingWire Phenomenon, Boston, USA 24–27 March 1959, Plenum Press, New York, pp. 7–13.Google Scholar
  9. Chace W.G., R.L. Morgan & K.R. Saari, 1959. Conductivity during the ‘dwell-time’ of a wire explosion. In: Chace W.G. and More H.K. eds. Exploding Wires, Vol. 1. Proc. of 1st Conf. on the ExplodingWire Phenomenon, Boston, USA, 24–27 March 1959, Plenum Press, New York, pp. 59–72.Google Scholar
  10. Chemezova L.I., 1987. Modeling and engineering calculation of EEW of various metals. Ph.D., Inst. of High Current Electronics, Tomsk,Russia (in Russ.).Google Scholar
  11. Chemezova L.I., G.A. Mesyats, V.S. Sedoi, B.N. Semin & V.V. Valevich, 1998. Proc. of 28 Int. Symp. on Discharges and Electric Insulation in Vacuum. Vol. 1, Endhoven, Netherlands, 17–21 August 1998, Hosted by Endhov. Univers. of Technology, pp. 48–51.Google Scholar
  12. Cnare E.C., 1961. Observations on the striations of electrically exploded copper foils. J. Appl. Phys. 32, 1043–1044.Google Scholar
  13. Cnare E.C. & F.W. Neilson, 1959. Large exploding wirescorrelation to small wires and pause time versus length dependency. In: Chace W.G. and More H.K. eds. Exploding Wires, Vol. 1. Proc. of 1st Conf. on the ExplodingWire Phenomenon, Boston, USA 24–27 March 1959, Plenum Press, New York, pp. 83–96.Google Scholar
  14. Cook E. & B. Siegel, 1967. Reactions of SF6 with exploding metals. J. Inorg. Nucl. Chem. 29, 2739–2743.Google Scholar
  15. DiMarco J.N. & L.C. Burkhardt, 1970. Characteristics of a magnetic energy storage system using exploding foils. J. Appl. Phys. 41, 3894–3899.Google Scholar
  16. Glazunov G.P., V.P. Kantsedal & A.A. Kornienko, 1978. Some properties of fine powders prepared by EEW in high pressure gas. Zh. Sov. Questions Atom. Sci. Technic. Atom. Mater. Sci. 1, 21–24 (in Russ.).Google Scholar
  17. Ivanov V.V., Y.A. Kotov, V.R. Khrustov, O.M. Samatov, R. Bohme, H. Karow & G. Shumacher, 1995. Synthesis and dynamic composition of ceramic nanopowders by techniques based on electric pulsed power. J. Nanostr. Mater. 6, 287–290.Google Scholar
  18. Ivanov V.V., S.N. Paranin, V.R. Khrustov & A.I. Medvedev, 1999. Fabrication of articles of nanostructured ceramics based on Al2O3 and ZrO2 by pulsed magnetic compaction and sintering. In: Vincenzini P. ed. Proc. of 9th Cimtec-World Ceramic Congress, Ceramics: Getting into the 2000's, Part C. Florence, Italy, 14–19 June, 1998. Techna, Faenza, pp. 441–448.Google Scholar
  19. Ivanov V.V., Y.A. Kotov, V.R. Khrustov, O.M. Samatov, S.Y. Ivin, A.M. Murzakaev, V.V. Osipov, M.G. Ivanov, A.K. Stolts & A.I. Medvedev, 2000. Development of Al2O3–ZrO2 nanostructured composites using pulsed power technologies. In: Ruehle M. and Gleiter H. eds. Interface Controlled Materials, EUROMAT99-Vol. 9, Wiley, pp. 166–171.Google Scholar
  20. Ivanov V.V., S.Y. Ivin, A.I. Medvedev, S.N. Paranin, V.R. Khrustov & A.K. Stolts, 2001. Peculiarities of sintering ceramic on base of doped MgO and TiO2 of ?-Al2O3 with submicron structure. Russ. J. Inorg. Mater. 37, 248–256.Google Scholar
  21. Johnson R.L. & B.A. Siegel, 1970. Chemical reactor utilizing successive multiple electrical explosion of metal wires. Rew. Sci. Instr. 41, 854–859.Google Scholar
  22. Joncich M.J. & D.C. Reu, 1964. Synthesis of inorganic binary compounds using exploding wire techniques. In: Chace W.G. and More H.K. eds. Exploding Wires, Vol. 3. Proc. of the 3rd Conf. on Exploding Wire Phenomenon. Boston, USA, 10–12 March 1964, Plenum Press, New York, pp. 353–359.Google Scholar
  23. Joncich M.J., J.W. Vauchn & B.F. Kuntsen, 1966. Preparation of metal nitrides by the exploding wire technique. Canad. J. Chem. 44, 137–142.Google Scholar
  24. Karioris F.G. & B.R. Fish, 1962. An exploding wire aerosol generator. J. Col. Sci., 17: 155–161.Google Scholar
  25. Kotov Y.A. & N.A. Yavorovski, 1978. Investigation of particles preparing by electrical explosion of wires. Zh. Sov. Phys. Chem. Mater. Treatment 4, 24–29 (in Russ.).Google Scholar
  26. Kotov Y.A. & A.P. Tsiplenko, 1984. Research of explosive opening switch having dielectric cumulative jets. In: Titov V.M. and Shvetsov G.A. eds. Ultrahigh Magnetic Fields, Proc. of 3rd Int. Conf. on Megagauss Magnetic Fields, Generation and Related Topics, Novosibirsk, Russia. 13–17 June 1983, Moscow, Nauka, pp. 402–405 (in Russ.).Google Scholar
  27. Kotov Yu.A. & O.M. Samatov, 1994. Characteristics of alumina powders prepared by pulsed heating of wire. Russian J. Poverkhnost, 10-11, 90–94 (in Russ.).Google Scholar
  28. Kotov Y.A. & O.M. Samatov, 1999. Production of Nanometer-Sized AlN powders by the Exploding Wire Method. J. NanoStruc. Mater. 12, 119–122.Google Scholar
  29. Kotov Y.A., B.M. Kovaltchuk, N.G. Kolganov, G.A. Mesyats & V.S. Sedoi, 1976a. Nanosecond pulse generators with inductive storage. In: Proc. of 1st IEEE Int. Pulsed Power Confer. Lubbock, Texas, USA, 9–11 November 1976, pp. 1A1–1A11.Google Scholar
  30. Kotov Y.A., V.S. Sedoi & L.I. Chemezova, 1976b. Energetic-time characteristics of LC-circuit with EEW. In: Mesyats G.A. ed. Collected Papers: Development and Application of Intensive Electron Beams. Novosibirsk, Nauka, pp. 61–69 (in Russ.).Google Scholar
  31. Kotov Y.A., O.M. Samatov, V.S. Sedoi, L.I. Chemezova & A.A. Chertov, 1990. Heating of conductors by high-density current. The energy input and the integral of action. In: Titov V.M. and Shvetsov G.A. eds. Proc. of 5th Int. Conf. on Megagauss Fields and Pulsed Power Systems, Novosibirsk, Russia, 3–7 July 1989, Nova Science Pub. New York, 1990, pp. 497–502.Google Scholar
  32. Kotov Y.A., I.V. Beketov, A.M. Murzakaev, O.M. Samatov, R. Boehme & G. Schumacher, 1996. Synthesis of Al2O3, TiO2 and ZrO2 nanopowders by electrical explosion of wires. In: Schulz R. ed. Proc. of Symp. Metastable, Mechanically Alloyed and Nanocrystalline Materials – ISMANAM-95, Quebec, Canada, 24–28 July 1995, Material Science Forum Vols. 225–227, Transtec Publications, Switzerland, pp. 913–916.Google Scholar
  33. Kotov Y.A., E.I. Azarkevich, I.V. Beketov, T.M. Demina, A.M. Murzakaev & O.M. Samatov, 1997. Producing Al and Al2O3 nanopowders by electrical explosion of wire. In: Abelard P., Boussuge M., Chartier Th., Fantozzi G., Lozes G. and Rousset A. eds. Proc. of 5th Conf. and Exhibition of the European Ceramic Society, Versailles, France, 22–26 June, 1997, Key Engineering Materials, Vol. 132–136, Part 1. Trans Tech. Publications, Switzerland, pp. 173–176.Google Scholar
  34. Kotov Y.A., I.V. Beketov, E.I. Azarkevich & A.M. Murzakaev, 1999. Synthesis of nanometer-sized powders of alumina containing magnesia. In: Vincenzini P. ed. Proc. of 9th Cimtec-World Ceramic Congress, Ceramics: Getting into the 2000's, Part B. Florence, Italy, 14–19 June 1998. Techna, Faenza, pp. 277–284.Google Scholar
  35. Kotov Y.A.,V.A. Popov, I.V. Beketov, O.M. Samatov, V.V. Ivanov, S.N. Paranin, Y.E. Markushkin & V.V. Garlevskij, 2000a. Using nano-materials for producing aluminum matrix composites. In: Chandra T., Higashi K., Suayanarayana C. and Tome C. eds. Proc. Int. Conf. on Processing & Manufacturing of Advance Materials – THERMEC2000. Las-Vegas, USA, 4–8 December 2000, F09-03POF.Google Scholar
  36. Kotov Y.A., E.A. Litvinov, S.Y. Sokovnin, M.E. Balezin & V.R. Khrustov, 2000b. Metalceramic cathodes for electron accelerators. Dokl. Phys. 45, 18–21.Google Scholar
  37. Kotov Y.A., V.V. Osipov, M.G. Ivanov, O.M. Samatov, V.V. Platonov, E.I. Azarkevich, A.M. Murzakaev & A.I. Medvedev, 2002. Properties of oxide nanopowders prepared by target evaporation with a pulse-periodic CO2 laser. J. Tech. Phys. 47, 1420–1426 (Trans. from Russian Zh. Tekn. Fiz. 2002, 72: 76–82).Google Scholar
  38. Kotov Y.A., O.M. Samatov, Ch.K. Rhee, A.M. Murzakaev, O.R. Timoshenkova, A.I. Medvedev & A.K. Shtolts, 2003a. Nanopowders prepared by simultaneous electrical explosion of Al and Fe wires. Proc. of 10th APAM Topical Seminar and 3rd 550 Conf. ‘Materials of Siberia, Nanoscience and Technology’, 2– 6 June, 2003, Novosibirsk, Russia. Instit. Inorg. Chemistry of Siberian Division of RAS, Novosibirsk, 128–130.Google Scholar
  39. Kotov Yu.A., I.V. Beketov, A.V. Bagazeev, A.M. Murzakaev, A.I. Medvedev & O.M. Samatov, 2003b. Properties NiO powders prepared by EEW method. In: Alymov M.I., Yu.V. Petrikin and V.F. Petrunin eds, Proc. of 6th Russian Conf. ‘Phys. and Chemistry of Ultrafine (Nano-) Systems’, 19–23 August, 2002, Tomsk, Russia, Moscow, MEPI, 158–156 (in Russ.).Google Scholar
  40. Kotov Yu.A., Ch.K. Rhee, A.V. Bagazeev, I.V. Beketov, T.M. Demina, A.M. Murzakaev, O.M. Samatov, O.P. Timoshenkova, A.I. Medvedev & A.K. Shtolts, 2003c. Production of nanopowders by electrical explosion of wires: A study of their oxidation during storage and heating in air. In: Ahn J-H. & Hahn Y-D. eds. Proc. of the ninth Int. Symp. on Metastable, mechanically alloyed and nanocristalline materials. Seoul, Korea, 8–12 September, 2002, J. of Metastable and Nanocristalline Materials. Trans Tech. Publ., Switzerland, 15–16, 343–348.Google Scholar
  41. Leopold H.S., 1964. Effect bridgewire parameters on explosive initiation. In: ChaceW.G. and More H.K. eds. ExplodingWires, Vol. 3. Proc. of the 3rd Conf. on ExplodingWire Phenomenon, Boston, USA, 10–12 March 1964, Plenum Press, New York, pp. 125–152.Google Scholar
  42. Lerner M.I., 1988. Operating by formation process of particles in EEW conditions. Ph.D., Inst. of High Voltages. Tomsk, Russia (in Russ.).Google Scholar
  43. McFarlane H.B., 1959. A high voltage, quick-acting fuse, to protect capacitor bank. In: Chace W.G. and More H.K. eds. Exploding Wires, Vol. 1. Proc. of the 1st Conf. on Exploding Wire Phenomenon. Boston, USA. 24–27 March 1959, pp. 324–344.Google Scholar
  44. Oktay E., 1965. Effect of wire cross section on the first pulse of an exploding wire. Rev. Sci. Instr. 36, 1327–1328.Google Scholar
  45. Phalen R.F., 1972. Evaluation of an exploded-wire aerosol generator for use in inhalation studies. Aerosol Sci. 3, 395–406.Google Scholar
  46. Popov V.V., D.R. Lesuer, Y.A. Kotov, V.V. Ivanov, O.M. Smirnov, A.V. Marmulev, S.V. Zayats & I.V. Beketov, 2002. On the development of MMCs containing copper with silicon carbide reinforcement using nanomaterials and dynamic compaction. Proc. of IX Int. Conf. on Composites Engineering, San Diego, California, USA, 1–6 July 2002, pp. 627–628.Google Scholar
  47. Rhee C.K., G.H. Lee, W.W. Kim, V.V. Ivanov, S.V. Zajats & A.I. Medvedev, 2003. Nanostructured Al/Al2O3 composite sintered by magnetic pulse compaction. J. Metastable Nanocrystals 15–16, 401–406.Google Scholar
  48. Rüdenberg R., 1950. Transient Performance of Electric Power Systems. New York-Toronto-London, 678 pp.Google Scholar
  49. Sedoi V.S., 1976. Some regularities of EEW. Zh. Sov. Tech. Fiz. 46, 1707–1710 (in Russ.).Google Scholar
  50. Sherman P.M., 1975. Generation of submicron metal particles. J. Colloid Interface Sci. 51, 87–93.Google Scholar
  51. Sherman P.M., 1977. Prediction of conditions for a single pulse discharge. J. Appl. Phys. 48, 143–144.Google Scholar
  52. Tucker T.J. & F.W. Neilson, 1959. The electrical behavior of fine wires exploded by a coaxial cable discharge system. In: Chace W.G. and More H.K. eds. Exploding wires, Vol. 1. Proc. of 1st Conf. on the Exploding Wire Phenomenon, Boston, USA, 24–27 March, 1959, Plenum Press, New York, pp. 73–81.Google Scholar
  53. Vanyukov M.P. & V.I. Isaenko, 1962. Investigation of light produced by exploding wires. Zh. Sov. Tech. Fiz. 32, 197–201 (in Russ.).Google Scholar
  54. Yavorovski N.A., 1981. Electrical explosion of wires as method for preparation of ultrafine metal powders. Ph.D., Inst. of High Voltages, Tomsk, Russia (in Russ.).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Yu A. Kotov
    • 1
  1. 1.Institute of Electrophysics, Ural Branch Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations