On Equilibria of the Two-fluid Model in Magnetohydrodynamics

  • Dimitri J. Frantzeskakis
  • Ioannis G. Stratis
  • Athanasios N. Yannacopoulos


We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria.

Beltrami fields double curl equation equilibrium solutions magnetohydrodynamics two-fluid model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aly, J. J. and Amari, T.: Current sheets in two-dimensional magnetic fields I, II, III, Astronom. Astrophys. 221 (1989), 287–294; 227 (1990), 628–633; 319 (1997), 699–719.zbMATHMathSciNetADSGoogle Scholar
  2. 2.
    Ammari, H. and Nédélec, J.-C.: Small chirality behaviour of solutions to electromagnetic scattering problems in chiral media, Math. Methods Appl. Sci. 21 (1998), 327–359.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Biskamp, D.: Nonlinear Magnetohydrodynamics, Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  4. 4.
    Braginskii, S. I.: Transport processes in a plasma, In: M. A. Leontovich (ed.), Reviews of Plasma Physics, Consultants Bureau, New York, 1965, 205–311.Google Scholar
  5. 5.
    Bogoyavlenskij, O. I.: Exact axially symmetric MHD equilibria, C.R. Acad. Sci. Paris Sér. I Math. 331 (2000), 569–574.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Boulmezaoud, T. Z.: Etude des champs de Beltrami dans des domaines de ℝ3 bornés et non bornés et applications en astrophysique, PhD Thesis, Univ. P. M. Curie, Paris, 1998.Google Scholar
  7. 7.
    Boulmezaoud, T. Z. and Amari, T.: On the existence of non-linear force-free fields in three-dimensional domains, Z. Angew. Math. Phys. 51 (2000), 942–967.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Boulmezaoud, T. Z. and Amari, T.: Approximation of linear force-free fields in bounded 3-D domains, Math. Comput. Modelling 31 (2000), 109–129.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Boulmezaoud, T. Z., Maday, Y. and Amari, T.: On linear force-free fields in bounded and unbounded three-dimensional domains, Math. Modelling Numer. Anal. (M2AN) 33 (1999), 359–393.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dassios, G. and Kleinman, R.: Low Frequency Scattering, Clarendon Press, Oxford, 2000.Google Scholar
  11. 11.
    Dautray, R. and Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications, Springer, Berlin, 1991.Google Scholar
  12. 12.
    Davidson, P. A.: An Introduction to Magnetohydrodynamics, Cambridge Univ. Press, Cambridge, 2001.Google Scholar
  13. 13.
    Kravchenko, V. V.: On Beltrami fields with nonconstant proportionality factor, J. Phys. A 36 (2003), 1515–1522.zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Laurence P. and Stredulinsky, E. W.: Two-dimensional magnetohydrodynamic equilibria with prescribed topology, Comm. Pure Appl. Math. 53 (2000), 1177–1200.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Moses, H. E.: Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem and applications to electromagnetics and fluid dynamics, SIAM J. Appl. Math. 21 (1971), 114–144.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Neukirch, T.: Quasiequilibria: a special class of time dependent solutions of the two-dimensional magnetohydrodynamic equations, Phys. Plasmas 2 (1995), 4389–4399.MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Rappaz, J. and Touzani, R.: On a two-dimensional magnetohydrodynamic problem I: Modelling and analysis, Math. Modelling Numer. Anal. (M2AN) 26 (1991), 347–364.MathSciNetGoogle Scholar
  18. 18.
    Yoshida, Z.: Application of Beltrami functions in plasma physics, Nonlinear Anal. 30 (1997), 3617–3627.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yoshida, Z. and Giga, Y.: Remarks on spectra of operator rot, Math. Z. 204 (1990), 235–245.zbMATHMathSciNetGoogle Scholar
  20. 20.
    Yoshida, Z. and Mahajan, S.: Simultaneous Beltrami conditions in coupled vortex dynamics, J. Math. Phys. 40 (1999), 5080–5091.zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Dimitri J. Frantzeskakis
    • 1
  • Ioannis G. Stratis
    • 2
  • Athanasios N. Yannacopoulos
    • 3
  1. 1.Department of PhysicsUniversity of AthensAthensGreece
  2. 2.Department of MathematicsUniversity of AthensAthensGreece
  3. 3.Department of Statistics and Actuarial ScienceUniversity of the Aegean, GR 82300 KarlovassiSamosGreece. e-mail

Personalised recommendations