Earth, Moon, and Planets

, Volume 92, Issue 1–4, pp 1–27

The Kuiper Belt and its Primordial Sculpting

  • A. Morbidelli
  • M.E. Brown
  • H.F. Levison
Article

Abstract

We discuss the structure of the Kuiper belt as it can be inferred from the first decade of observations. In particular, we focus on its most intriguing properties – the mass deficit, inclination distribution, the apparent existence of an outer edge and of a correlation among inclinations, colours and sizes – which clearly show that the belt has lost its pristine structureof a dynamically cold proto-planetary disk. Understanding how the Kuiperbelt acquired its present structure will provide insight into the formationof the outer planetary system and on its early evolution. We outline ascenario of primordial sculpting – issued from a combination of mechanismsproposed by various authors – that seems to explain most of the observedproperties of the Kuiper belt. Several aspects are not yet totallyclear. But, for the first time, we have a view – if not of the detailedsculpture – at least of its rough cast.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. L., Bernstein, G. M., and Malhotra, R.: 2001, ‘The Edge of the Solar System’ Astroph. J. 549, L241–L244.Google Scholar
  2. Allen, R. L., Bernstein, G. M., and Malhotra, R.: 2002, ‘Observational Limits on a Distant Cold Kuiper Belt’ Astron. J. 124, 2949–2954.Google Scholar
  3. Bate, M. R., Bonnell, I. A., and Bromm, V.: 2003, ‘The Formation of a Star Cluster: Predicting the Properties of Stars and Brown Dwarfs’ M.N.R.A.S. 339, 577–599.Google Scholar
  4. Brown, M.: 2001, ‘The Inclination Distribution of the Kuiper Belt’ Astron. J. 121, 2804–2814.Google Scholar
  5. Brown, M. E. and Trujillo, C. A.: 2003, ‘The Plane of the Kuiper Belt’ in preparation.Google Scholar
  6. Brunini, A. and Melita, M.: 2002, ‘The Existence of a Planet Beyond 50 AU and the Orbital Distribution of the Classical Edgeworth Kuiper Belt Objects’ Icarus 160, 32–43.Google Scholar
  7. Chiang, E. I. and Brown, M. E.: 1999, ‘Keck Pencil-beam Survey for Faint Kuiper Belt Objects’ Astron. J. 118, 1411–1422.Google Scholar
  8. Chiang, E. I., Jordan, A. B., Millis, R. L., Buie, M. W., Wasserman, L. H., Elliot, J. L., Kern, S. D., Trilling, D. E., Meech, K. J., and Wagner, R. M.: 2003, ‘Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances’ Astron. J. 126, 430–443.Google Scholar
  9. Cohen, C. J. and Hubbard, E. C.: 1965, ‘The Orbit of Pluto’ The Observatory 85, 43–44.Google Scholar
  10. Davis, D. R. and Farinella, P.: 1997, ‘Collisional Evolution of Edgeworth-Kuiper Belt Objects’ Icarus 125, 50–60.Google Scholar
  11. Davis, D. R. and Farinella, P.: 1998, ‘Collisional Erosion of a Massive Edgeworth-Kuiper Belt: Constraints on the Initial Population’ Lunar Planet. Science Conf. 29, 1437–1438.Google Scholar
  12. Dones, L.: 1997, in Y. J. Pendleton & A. G. G. M. Tielens (eds.), ASP Conf. Ser. 122, From Stardust to Planetesimals, San Francisco: ASP, 347.Google Scholar
  13. Doressoundiram, A., Barucci, M. A., Romon, J., and Veillet, C.: 2001, ‘Multicolor Photometry of Trans-neptunian Objects’ Icarus 154, 277–286.Google Scholar
  14. Duncan, M. J., Levison, H. F., and Budd, S. M.: 1995, ‘The Long-term Stability of Orbits in the Kuiper Belt’ Astron. J. 110, 3073–3083.Google Scholar
  15. Duncan, M. J. and Levison, H. F.: 1997, ‘Scattered Comet Disk and the Origin of Jupiter Family Comets’ Science 276, 1670–1672.Google Scholar
  16. Fernández, J. A. and Ip, W. H.: 1996, ‘Orbital Expansion and Resonant Trapping During the Late Accretion Stages of the Outer Planets’ Pl. Sp. Sci. 44, 431–439.Google Scholar
  17. Garcia-Sanchez, J., Weissman, P. R., Preston, R. A., Jones, D. L., Lestrade, J. F., Latham, D. W., Stefanik, R. P., and Paredes, J. M.: 2001, ‘Stellar Encounters with the Solar System’ Astron. Astropys. 379, 634–659.Google Scholar
  18. Gladman, B., Kavelaars, J. J., Nicholson, P. D., Loredo, T. J., and Burns, J. A.: 1998, ‘Pencil-beam Surveys for Faint Trans-Neptunian Objects’ Astron. J. 116, 2042–2054.Google Scholar
  19. Gladman, B., Kavelaars, J. J., Petit, J. M., Morbidelli, A., Holman, M. J., and Loredo, Y.: 2001, ‘The Structure of the Kuiper Belt: Size Distribution and Radial Extent’ Astron. J. 122, 1051–1066.Google Scholar
  20. Gladman, B., Holman, M., Grav, T., Kaavelars, J. J., Nicholson, P., Aksnes, K., and Petit, J. M.: 2002, ‘Evidence for an Extended Scattered Disk’ Icarus 157, 269–279.Google Scholar
  21. Goldreich, P., Lithwick, Y., and Sari, R.: 2002, ‘Formation of Kuiper-belt Binaries by Dynamical Friction and Three-body Encounters’ Nature 420, 643–646.Google Scholar
  22. Gomes, R. S.: 2000, ‘Planetary Migration and Plutino Orbital Inclinations’ Astron. J. 120, 2695–2707.Google Scholar
  23. Gomes, R. S.: 2003, ‘The Origin of the Kuiper Belt High Inclination Population’ Icarus 161, 404–418.Google Scholar
  24. Gomes, R. S., Morbidelli, A., and Levison, H. F.: 2003, ‘Planetary Migration in a Planetesimal Disk: Why Did Neptune Stop at 30 AU?’ Icarus, in press.Google Scholar
  25. Hahn, J. M. and Malhotra, R.: 1999, ‘Orbital Evolution of Planets Embedded in a Planetesimal Disk’ Astron. J. 117, 3041–3053.Google Scholar
  26. Hainaut, O.: 2002, http://www.sc.eso.org/ ohainaut/MBOSS/Google Scholar
  27. Henrard, J.: 1982, ‘Capture into Resonance – An Extension of the Use of Adiabatic Invariants’ Cel. Mech. 27, 3–22.Google Scholar
  28. Ida, S., Larwood, J., and Burkert, A.: 2000, ‘Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects’ Astroph. J. 528, 351–356.Google Scholar
  29. Jewitt, D. C. and Luu, J. X.: 1993, ‘Discovery of the Candidate Kuiper Belt Object 1992 QB1’ Nature 362, 730–732.Google Scholar
  30. Jewitt, D., Luu, J., and Chen, J.: 1996, ‘The Mauna-Kea-Cerro-Totlolo (MKCT) Kuiper Belt and Centaur Survey’ Astron. J. 112, 1225–1232.Google Scholar
  31. Jewitt, D., Luu, J., and Trujillo, C.: 1998, ‘Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey’ Astron. J. 115, 2125–2135.Google Scholar
  32. Kenyon, S. J. and Luu, J. X.: 1998, ‘Accretion in the Early Kuiper Belt: I. Coagulation and Velocity Evolution’ Astron. J. 115, 2136–2160.Google Scholar
  33. Kenyon, S. J. and Luu, J. X.: 1999a, ‘Accretion in the Early Kuiper Belt: II. Fragmentation’ Astron. J. 118, 1101–1119.Google Scholar
  34. Kenyon, S. J. and Luu, J. X.: 1999b, ‘Accretion in the Early Outer Solar System’ Astrophys. J. 526, 465–470.Google Scholar
  35. Kenyon, S. J. and Bromley, B. C.: 2002, ‘Collisional Cascades in Planetesimal Disks. I. Stellar Flybys’ Astron. J. 2002, 1757–1775.Google Scholar
  36. Kobayashi, H. and Ida, S.: 2001, ‘The Effects of a Stellar Encounter on a Planetesimal Disk’ Icarus 153, 416–429.Google Scholar
  37. Kuchner, M. J., Brown, M. E., and Holman, M.: 2002, ‘Long-Term Dynamics and the Orbital Inclinations of the Classical Kuiper Belt Objects’ Astron. J. 124, 1221–1230.Google Scholar
  38. Kuiper, G. P.: 1951, ‘On the Origin of the Solar System’ in Hynek, J. A. (ed.), Astrophysics, McGraw-Hill, New York, 357 pp.Google Scholar
  39. Levison, H. F. and Duncan, M. J.: 1997, ‘From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets’ Icarus 127, 13–32.Google Scholar
  40. Levison, H. F. and Stern, S. A.: 2001, ‘On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt’ Astron. J. 121, 1730–1735.Google Scholar
  41. Levison, H. F. and Morbidelli, A.: 2003, ‘Pushing Out the Kuiper Belt’ Nature 426, 419–421.Google Scholar
  42. Levison, H. F., Morbidelli, A., and Dones, L.: 2003, ‘Forming the Outer Edge of the Kuiper Belt by a Stellar Encounter: Constrints from the Oort Cloud’ in preparation.Google Scholar
  43. Lewis, J. S.: 1995, Physics and Chemistry of the Solar System, Academic Press, San Diego.Google Scholar
  44. Malhotra, R.: 1993, ‘The Origin of Pluto's Peculiar Orbit’ Nature 365, 819–821.Google Scholar
  45. Malhotra, R.: 1995, ‘The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune’ Astron. J. 110, 420–432.Google Scholar
  46. Melita, M., Larwood, J., Collander-Brown, S., Fitzsimmons, A., Williams, I. P., and Brunini, A.: 2002, ‘The Edge of the Edgeworth-Kuiper Belt: Stellar Encounter, Trans-Plutonian Planet or Outer Limit of the Primordial Solar Nebula?’ in Asteroid, Comet, Meteors, ESA Spec. Publ. series, 305–308.Google Scholar
  47. Morbidelli, A. and Valsecchi, G. B.: 1997, ‘Neptune Scattered Planetesimals Could have Sculpted the Primordial Edgeworth–Kuiper Belt’ Icarus 128, 464–468.Google Scholar
  48. Morbidelli, A. and Brown, M.: 2003, ‘The Kuiper Belt and the Primordial Evolution of the Solar System’ in Festou et al. (eds.), Comet II, University Arizona Press, Tucson, AZ, in press.Google Scholar
  49. Morbidelli, A. and Levison, H. F.: 2003, ‘Scenarios for the Origin of the Trans-Neptunian Object 2000 CR105’ in preparation.Google Scholar
  50. Nagasawa, M. and Ida, S.: 2000, ‘Sweeping Secular Resonances in the Kuiper Belt Caused by Depletion of the Solar Nebula’ Astron. J. 120, 3311–3322.Google Scholar
  51. Petit, J. M., Morbidelli, A., and Valsecchi, G. B.: 1999, ‘Large Scattered Planetesimals and the Excitation of the Small Body Belts’ Icarus 141, 367–387.Google Scholar
  52. Petit, J. M. and Mousis, O.: 2003, ‘KBO Binaries: Are They Really Primordial?’ Icarus, submitted.Google Scholar
  53. Stern, S. A.: 1995, ‘Collisional Time Scales in the Kuiper Disk and Their mplications’ Astron. J. 110, 856–868.Google Scholar
  54. Stern, S. A.: 1996, ‘On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt’ Astron. J. 112, 1203–1210.Google Scholar
  55. Stern, S. A. and Colwell, J. E.: 1997a, ‘Accretion in the Edgeworth-Kuiper Belt: Forming 100–1000 KM Radius Bodies at 30 AU and Beyond’ Astron. J. 114, 841–849.Google Scholar
  56. Stern, S. A. and Colwell, J. E.: 1997b, ‘Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30–50 AU Kuiper Gap’ Astroph. J. 490, 879–885.Google Scholar
  57. Stern, S. A.: 2002, ‘Evidence for a Collisonal Mechanism Affecting Kuiper Belt Object Colors’ Astron. J. 124, 2297–2299.Google Scholar
  58. Tegler, S. C. and Romanishin, W.: 2000, ‘Extremely Red Kuiper-belt Objects in Near-circular Orbits Beyond 40 AU’ Nature 407, 979–981.Google Scholar
  59. Thebault, P. and Doeressoundiram, A.: 2003, ‘A Numerical Test of the Collisional Resurfacing Scenario. Could Collisional Activity Explain the Spatial Distribution of Color-index Within the Kuiper Belt?’ Icarus 162, 27–37.Google Scholar
  60. Trujillo, C. A. and Brown, M. E.: 2001, ‘The Radial Distribution of the Kuiper Belt’ Astroph. J. 554, 95–98.Google Scholar
  61. Trujillo, C. A., Jewitt, D. C., and Luu, J. X.: 2001, ‘Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey’ Astron. J. 122, 457–473.Google Scholar
  62. Trujillo, C. A. and Brown, M. E.: 2002, ‘A Correlation between Inclination and Color in the Classical Kuiper Belt’ Astroph. J. 566, 125–128.Google Scholar
  63. Trujillo, C. A. and Brown, M. E.: 2003, ‘The Caltech Wide Area Sky Survey: Beyond (50000) Quaoar’ submitted to Proceedings of the First Decadal Review of the Edgeworth-Kuiper Belt Meeting in Antofagasta, Chile, to be published in Earth Moon and Planets.Google Scholar
  64. Weidenschilling, S.: 2002, ‘On the Origin of Binary Transneptunian Objects’ Icarus 160, 212–215.Google Scholar
  65. Weidenschilling, S.: 2003, ‘Formation of Planetesimals/Cometesimals in the Solar nebula’ in Festou et al. (eds.), Comet II, University Arizona Press, Tucson, AZ.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Morbidelli
    • 1
  • M.E. Brown
    • 2
  • H.F. Levison
    • 3
    • 1
  1. 1.Observatoire de la Côte d'AzurNiceFrance
  2. 2.California Institute of TechnologyPasadenaCalifornia
  3. 3.SWRIBoulder

Personalised recommendations